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Large scale systems consisting of many interacting subsystems are often controlled in a dis-

tributed fashion due to inherent limitations in computation, communication, or sensing. Here,

individual agents must make decisions based on local, often incomplete information. This disser-

tation focuses on understanding performance tradeoffs in distributed control systems, specifically

focusing on using a game theoretic framework to assign agent control laws. Performance of a dis-

tributed control law is determined by (1) the degree with which it meets a stated objective, (2) the

amount of time it takes to converge, (3) agents’ informational requirements, and (4) vulnerability

to adversarial manipulation. The three main research questions addressed in this work are:

• When is fast convergence to near-optimal behavior possible in a distributed system?

We design a distributed control law which converges to a near-optimal configuration in a

time that is near-linear in the number of agents. This worst case convergence time is an

improvement over existing algorithms whose worst-case convergence times are exponential

in the number of agents.

• Can agents in a distributed system learn near-optimal correlated behavior despite severely

limited information about one another’s behavior?

We design a distributed control law that imposes limited informational requirements for

individual agents and converges to near-optimal correlated behavior.

• How does the structure of agent interaction impact a distributed control system’s vulnera-

bility to adversarial manipulation?

We derive a graph theoretical condition that ensures resilience to adversarial manipula-

tion, and we examine the conditions under which an adversary can manipulate collective

behavior in a distributed control system, simply by influencing small subsets of agents.
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Chapter 1

Introduction

Large scale systems consisting of many interacting subsystems are increasingly common, with

examples such as computer networks, smart grids, and robotic sensor networks. The objectives for

these applications are often complex; even centralized methods must frequently make tradeoffs

between performance and speed in order to optimize these systems. However, due to inherent lim-

itations in computation, communication, or sensing, large multi-agent systems are often controlled

in a distributed fashion. Here, individual agents, or subsystems, must make decisions based on

local, often incomplete information, potentially exacerbating tradeoffs between performance and

speed. Furthermore, the distributed nature of these multi-agent systems may introduce vulnerabil-

ities to adversarial manipulation: by influencing small subsets of agents, a malicious agent may be

able to degrade a system’s overall performance. The overarching goals of this dissertation are to

(1) characterize tradeoffs between speed, performance, vulnerability, and information available to

agents in distributed control systems, and (2) design algorithms with desirable guarantees in these

aspects. In order to address these goals, we focus specifically on the following questions:

• When is fast convergence to near-optimal behavior possible in a distributed system?

(Chapter 2)

• Can agents in a distributed system learn near-optimal correlated behavior despite

severely limited information about one another’s behavior? (Chapter 3)
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• How does the structure of agent interaction impact the system’s vulnerability to

adversarial manipulation? (Chapter 4)

This dissertation focuses on game theoretic methods of distributed control, which provide a

framework for prescribing agents’ control laws in a distributed control system [2,20,24,25,34,36,42,

46, 59, 67]. We begin by providing an informal background on game theoretic distributed control,

and then we informally state the contributions of this thesis, as prompted by the three research

questions above. This informal discussion will be followed by a formal development of necessary

background materials, and then a formal summary of contributions.

1.1 Background: Game theoretic distributed control

Agents’ control laws are a crucial component of any multi-agent system. They dictate how

individual agents process locally available information to make decisions. Factors that determine

the quality of a control law include informational dependencies, asymptotic performance guarantees,

convergence rates, and resilience to adversarial influence.

In a game theoretic control law, each agent is assigned a utility function1 and a learning

rule.2 Significant research has been directed at deriving distributed utility functions and learning

rules that enable agents to make decisions based on limited information and also have desirable

performance guarantees.

Utility functions: what should agents optimize?

An agent’s local utility function dictates what it should seek to optimize. Well-studied utility

functions from the literature include marginal contribution [62], equal share [5, 42], and Shapley

value [58] utilities. Effective utility functions such as these are typically aligned with the global

objective function. This means that when the system is near a globally optimal configuration,

1 The terms “utility” and “payoff” will refer to individual agents’ utility functions, whereas “objective” or “welfare”
will refer to the system level objective function. Note that in the social sciences literature, “welfare” often refers to
the sum of agents’ utilities; in this dissertation the term will be used more broadly. By design, maximization of the
global objective function will often coincide with maximization of the sum of agents’ utilities.

2 The terms “learning rule,” “revision strategy,” and “decision making strategy” will all refer to individual agents’
learning rules.
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individual agents are also performing well with respect to their local utility functions. An agent’s

individual utility function may depend on its own action and on available information about other

agents’ actions. This interdependence is desirable because an agent’s best action with respect to

the global objective often depends on the behavior of others. For example, if a subset of agents fails,

the remaining agents should compensate accordingly; interdependent utility functions can enable

this.

However, interdependence in agents’ utility functions adds complexity to the distributed

optimization problem. Individual agents do not have full control over the functions they seek to

optimize. This can often lead to the existence of undesirable equilibria. Example 1 demonstrates

a simple situation where undesirable equilibria can emerge if agents simply choose the optimal

action, conditioned on others’ actions. The existence of inefficient equilibria motivates the study of

alternative decision making rules which can act as methods for selecting desired equilibria.

Example 1. Suppose we have two agents, agent 1 and agent 2. Each agent can attempt to

perform one of two tasks, task 1, which has a value of 10 if completed, or task 2, which has a value

of 1 if completed. The two agents can observe each other’s behavior, but cannot communicate to

coordinate their actions. Suppose that the agents can accomplish either task by working together on

it, but they cannot accomplish either if they miscoordinate. This scenario is depicted in Figure 1.1.

Because the agents can observe each other’s actions, they have sufficient information to

evaluate the global objective function. Hence we can simply assign agents’ utilities to equal the

global objective.3 Even in this simple situation, where agents have global knowledge of the system

objective function and their utilities are exactly equal, inefficient Nash equilibria can emerge.

Informally, in a Nash equilibrium, no agent can improve its utility via a unilateral change of

action. In this example, there are two Nash equilibria: an efficient, or welfare maximizing, equilib-

rium when the two agents coordinate on task 1, and another inefficient, or suboptimal, equilibrium

when the two agents coordinate on task 2. When agents simply optimize their utilities conditioned

3 Assigning utilities equal to the global welfare is often impossible when agents do not have access to global
information about others’ actions.
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System objective

agent 2
task 1 task 2

agent 1
task 1 10 0
task 2 0 1

Agent utilities

agent 2
task 1 task 2

agent 1
task 1 10,10 0,0
task 2 0,0 1,1

Figure 1.1: A simple coordination task, with the system objective function on the left, and a possible choice of
agent utilities on the right. Here, the goal is to design agents’ utilities so that they coordinate to accomplish
a task. Task 1 is more important than task 2. The shaded boxes represent Nash equilibria: neither agent can
improve its utility via a unilateral change of action. Coordination on task 2 does not maximize the overall
objective or agents’ utilities, and is known as an inefficient Nash equilibrium. One objective in designing
effective agent learning rules is to select a Nash equilibrium which also maximizes the objective, namely
coordination on task 1.

on others’ behavior, they may settle on either an inefficient or an efficient equilibrium. Further-

more, the performance loss associated with inefficient equilibria is not necessarily bounded. In this

example, the difference in value between task 1 and task 2 could be very large, but collaboration

on the less valuable task would remain a Nash equilibrium and a possible rest point of a simple

utility maximization decision making strategy.

Learning rules: how should agents optimize?

An agent’s learning rule dictates how it should optimize its utility function. In some cases, it

may suffice for each agent to choose the action which maximizes its utility function, given others’

current behavior. This is know as a best response learning rule. However, in many distributed

systems, this approach can lead to undesirable equilibria, as shown in Example 1. Moreover, large

scale systems may have many undesirable equilibria, motivating the development of learning rules

which can select a particular desired equilibrium.

Alternative learning rules, such as log-linear learning [9], regret matching [18,40], or fictitious

play [19,47], have been studied in the literature. In particular, log-linear learning is a type of noisy

best response learning rule which can lead agents toward a global objective optimizer in distributed

control systems, provided agents’ utilities are designed appropriately. Here, agents optimize their

utilities most of the time, but occasionally make suboptimal choices. Log-linear learning and similar

noisy best response rules will be the focus of this dissertation.
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The combination of agents’ utility functions and learning rules dictates system dynamics,

and hence determines (1) performance with respect to the system level objective, and (2) speed of

convergence. Furthermore, agents’ abilities to evaluate their utility functions depends on locally

available information. Thus, information available to agents also impacts system dynamics, and

becomes a potential source for vulnerability.

1.2 Informal statement of contributions

Here, we informally summarize this dissertation’s primary contributions in the area of game

theoretic distributed control, with respect to the three research questions posed above.

Research question #1: When is fast convergence to near-optimal collective behavior

possible in a distributed system?

Contribution: Fast convergence to near-optimal collective behavior is possible when

agents revise their actions according a a mild variant of log-linear learning, provided

(1) agents’ utilities are their marginal contribution to the system level objective, and

(2) heterogeneity among agents is limited.

One well-studied method of optimizing behavior in a multi-agent system is to assign agent

utilities to be their marginal contribution to the overall system objective [62], and have agents

make decisions according to the log-linear learning rule [9]. In log-linear learning, agents primarily

choose utility maximizing actions, but choose suboptimally with a small probability that decreases

exponentially with respect to the associated payoff loss. In the long run, marginal contribution

utilities with log-linear learning dynamics spends the majority of time at the global objective

function maximizer. Unfortunately, worst-case convergence times for log-linear learning are known

to be exponential in the number of agents, [57] often rendering this game theoretic control method

impractical for large-scale distributed systems.

However, when system heterogeneity is limited, i.e., agents can be grouped into a small

number of populations according to their action sets and impact on the objective function, a

variant of log-linear learning achieves improved worst-case convergence times. In Chapter 2, we
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build on the work of [57] to derive this variant, which converges in near-linear time with respect to

the number of agents.

Research question #2: Can agents in a distributed system learn near-optimal corre-

lated behavior despite severely limited information about one another’s behavior?

Contribution: Following the algorithm in Chapter 3, agents with limited knowledge

of each other’s behavior can learn a utility-maximizing correlated equilibrium.

Significant research has been directed at deriving distributed learning rules that possess

desirable asymptotic performance guarantees and convergence rates and enable agents to make

decisions based on limited information. The majority of this research has focused on attaining

convergence to (pure) Nash equilibria under stringent information conditions [11, 18, 22, 23, 55, 65].

Recently, the research focus has shifted to ensuring convergence to alternative types of equilibria

that often yield more efficient behavior than Nash equilibria. In particular, results have emerged

that guarantee convergence to Pareto efficient Nash equilibria [44,56], potential function maximizers

[9, 41], welfare maximizing action profiles [3, 45], and the set of correlated equilibria [6, 16, 27, 38],

among others.

In most cases highlighted above, the derived algorithms guarantee (probabilistic) conver-

gence to the specified equilibria. However, the class of correlated equilibria has posed significant

challenges with regards to this goal. Learning algorithms that converge to an efficient correlated

equilibrium are desirable because optimal system behavior can often be characterized by a correlated

equilibrium. Unfortunately, the aforementioned learning algorithms, such as regret matching [27],

merely converge to the set of correlated equilibria. This means that the long run behavior does not

necessarily constitute a specific correlated equilibrium at any instance of time.

In Chapter 3 we design and analyze an algorithm that converges to a payoff maximizing coarse

correlated equilibrium when agents have no direct knowledge of each others’ behavior. Here, agents’

utilities depend on collective behavior, but they have no way of evaluating the utility of alternative

actions. Our algorithm uses a common random signal as a coordinating entity to eventually drive

agents toward the desired collective behavior. In the long run, day to day behavior is selected
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probabilistically according to the payoff maximizing coarse correlated equilibrium.

Research question #3: How does the structure of agent interaction impact a dis-

tributed system’s vulnerability to adversarial manipulation?

Contribution: If every subset of agent interacts with sufficiently many other agents,

the system is more resilient to adversarial manipulation.

Agents in a distributed system often interact and share information according to a network.

The structure of this network not only has an impact on a distributed control algorithm’s per-

formance and speed, but also on its resilience to adversarial manipulation. A loosely connected

network may be easier to influence, because an adversary could more easily manipulate the in-

formation available to subsets of agents, thereby creating impacts that cascade throughout the

system. On the other hand, a well-connected network may be more difficult to influence in this

way. In Chapter 4, we investigate such vulnerabilities for graphical coordination games [13,60] with

agents revising their actions according to log-linear learning. Here, we provided a condition based

on network structure which guarantees resilience in a graphical coordination game.

1.3 Technical Preliminaries

In this section, we provide technical motivation for the study of game theoretic control al-

gorithms, and we also establish the technical background and notation necessary to formally state

the main contributions of this dissertation.

Consider a multi-agent system consisting of agents, N = {1, 2, . . . , n}, where each agent

i ∈ N has a finite action set, Ai. The set of joint actions will be denoted by A =
∏
i∈N Ai, and a

joint action will be written as

a = (a1, a2, . . . , an) ∈ A,

or using the shorthand notation

(ai, a−i) := (a1, a2, . . . , ai, . . . , an) ∈ A.
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Suppose we aim to design agents’ local control laws in order to maximize the global objective

function, W : A → R. An agent’s control law will be defined by a utility function and learning rule.

1.3.1 Agent utility functions

Each agent, i ∈ N , is assigned a utility function, Ui : A → R, which maps each joint action

to a value in R. When agents’ information about others’ actions is limited, utilities can be designed

accordingly, e.g., taking the form Ui :
∏
j∈Ni∪{i}Aj → R, where Ni represents the set of agent i’s

neighbors, as defined by some underlying communication graph. Alternatively, agent utilities may

incorporate additional information about an underlying system state, e.g., Ui : A×X → R, where

X represents a set of possible states of the surrounding environment.

A set of agents together with action sets and utility functions defines a game.

Definition 1. A game is a tuple (N, {Ai}i∈N , {Ui}i∈N ) consisting of a set of agents, N , and their

associated action sets, {Ai}i∈N , and utility functions, {Ui}i∈N .

In the absence of any notion of dynamics over game, G, we often view the Nash equilibrium as

a natural rest point, since it occurs when no agent can improve its utility by unilaterally changing

its action, i.e., no agent has an incentive to unilaterally deviate from a Nash equilibrium.4

Definition 2. For a game G = (N, {Ai}i∈N , {Ui}i∈N ) , action profile a = (ai, a−i) ∈ A is a Nash

equilibrium [51] if it satisfies:

Ui(a) ≥ Ui(a′i, a−i), ∀i ∈ N, a′i ∈ Ai

Commonly studied utility functions include marginal contribution [62], equal share [5, 42],

and Shapley value [58] utilities. In this dissertation, we focus primarily on marginal contribution

utilities, as defined below.5

4 Throughout this dissertation, a Nash equilibrium will refer to an action profile satisfying this definition, whereas
an equilibrium will correspond to a rest point of some specified dynamics.

5 Game theoretic utility design for distributed control systems is an emerging area [43], and is not a topic of this
thesis. We employ well-studied utility functions which are suitable for our distributed optimization purposes and
focus our study on agents’ learning rules and communication structure.
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Definition 3. An agent’s marginal contribution [62] to the system objective, W : A → R, corre-

sponding to joint action a = (ai, a−i) ∈ A is defined by:

MCi(a) = W (a)−W (∅, a−i),

where (∅, a−i) represents removing agent i from the system, while keeping other agents fixed at

actions a−i ∈
∏
j∈N\{i} aj .

Assigning agents’ utilities to be their marginal contribution to the system welfare ensures

that the optimal allocation corresponds to a Nash equilibrium. Furthermore, this choice of utility

function defines a potential game.

Definition 4. A game (N, {Ai}i∈N , {Ui}i∈N ) is a potential game [48] if there exists a potential

function, φ : A → R satisfying

φ(ai, a−i)− φ(a′i, a−i) = Ui(ai, a−i)− Ui(a′i, a−i)

for all i ∈ N, all (ai, a−i) ∈ A, and all a′i ∈ Ai.

In fact, assigning agents’ utilities to be their marginal contribution to the system objective

defines a potential game with φ(a) = W (a), ∀a ∈ A, i.e., the potential function is equal to the

system welfare function. This is useful, because there are well studied learning algorithms which

converge to a potential function maximizer, e.g., log-linear learning [9], which we will discuss in

detail in Section 1.3.2.

Finally, marginal contribution utilities can also reduce informational requirements in certain

classes of distribution control problems, as we show in Example 2.

Example 2. Consider a resource allocation task, where we wish to allocate agents in N =

{1, 2, . . . , n} to a set of resources R = {r1, r2, . . . , rn}. Here, agent’s action sets are a collec-

tion of subsets of R, i.e., Ai ⊆ 2R, so that an action ai ∈ Ai represents allocation of agent i to

subset ai ⊆ R.



www.manaraa.com

10

In resource allocation problems, the global welfare depends on the welfare attained at each

resource. Typically, resource allocation problems have separable welfare functions:

Wglobal(a) =
∑
r∈R

Wr({a}r), a ∈ A, (1.1)

where Wr : A → R is the welfare function associated with resource r ∈ R, and {a}r represents the

set of agents selecting resource r in action profile a.

It is straightforward to show that, when the global welfare function is separable, i.e., can be

written as in (1.1), an agent’s marginal contribution is given by

MCi(ai, a−i) =
∑
r∈ai

Wr ({a}r)−Wr ({a}r \ {i}) .

Hence, agent i only needs information about other agents allocated to resources r ∈ ai ⊆ R to

evaluate its marginal contribution.

1.3.2 Learning rules

Agents’ learning rules are the second component of a game theoretic control law. Learning

rules dictate how agents process information in order to optimize their utility functions. Here, a

game G is repeated over time, producing a sequence of joint actions, a(0), a(1), a(2), . . . . At each

time t ∈ N, some subset of agents, S ⊆ N has the opportunity to revise their actions independently

according to a learning rule of the form:

ai(t) = Πi({a(τ)}τ=0,1,...,t−1;Ui(·),

where Π is a policy that may depend on the history of agents’ joint actions, and on the form of

agent i’s utility function. The precise form of a learning rule can vary, depending on the information

available to agent i at time t. For example, a learning rule may instead be based on a finite history

of joint actions, or on estimated (rather than exact) information.

For concreteness, we now define two well studied learning rules: the best response learning

rule and the log-linear learning rule.
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Definition 5. Given a game G = (N, {Ai}i∈N , {Ui}i∈N ), and an initial joint action a(0) ∈ A, the

best response learning rule proceeds by repeating the following steps at each time t ∈ N:

(1) Select an agent i ∈ N uniformly at random.6

(2) Agent i selects a “best response” action, i.e., agent i selects action

ai ∈ arg max
a′i∈Ai

Ui(a
′
i, a−i),

which maximizes its utility, given all other agents’ current actions.

(3) The ensuing joint action at time t+ 1 is

a(t+ 1) = (ai, a−i(t)),

i.e., agent i plays its best response action, and all other agents repeat their previous actions.

In potential games, the best response learning rule converges to a Nash equilibrium of the

game. However, this Nash equilibrium need not be efficient. For example, recall the game defined in

Example 1, with the system welfare and agent utility functions below. Recall that, in this example,

neither agent can accomplish a task alone; hence, if either agent is removed from the system the

value of the system objective is zero.

System objective

agent 2

task 1 task 2

agent 1
task 1 10 0

task 2 0 1

Agent utilities

agent 2

task 1 task 2

agent 1
task 1 10,10 0,0

task 2 0,0 1,1

6 Although selecting an agent uniformly at random is a centralized task, it is possible to define a fully decentralized
learning rule in which agents update their actions in continuous time according to arrival times associated with
independent Poisson processes. In Chapter 2 we formally define such a learning rule, but here we restrict ourselves
to discrete-time learning rules for simplicity.
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Indeed, this example is a potential game with agents’ utilities defined by their marginal

contribution to the system welfare, and potential function, φ, equal to the system objective, i.e.,

φ(a) =



10 if a = (task 1, task 1)

0 if a = (task 1, task 2)

0 if a = (task 2, task 1)

1 if a = (task 2, task 2)

(1.2)

Here, the best response process will converge to one of the two Nash equilibria shaded in

grey, depending on the initial joint action, a(0), and on the identity of the updating agent at each

time. Hence, there is no guarantee that the best response process will select a welfare-optimizing

Nash equilibrium.

Mathematically, the best response process defines a Markov chain over the joint action space.

We provide mathematical background on Markov chains in Appendix A. Transition probabilities

for the Markov chain associated with the best response learning rule for the example above is shown

in Figure 1.2, and are also given by the probability transition matrix,

P =



1 0 0 0

0.5 0 0 0.5

0.5 0 0 0.5

0 0 0 1


.

This Markov chain has two stationary distributions.

π1 =

[
1 0 0 0

]
, and π2 =

[
0 0 0 1

]
,

where the four joint actions are in the order shown in Figure 1.2. With respect to the global

objective function, π1 is optimal, whereas π2 is suboptimal.

Log-linear learning belongs to the class of perturbed best response learning rules: here,

an updating agent selects a best response action the majority of the time, but occasionally selects
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Figure 1.2: Transition probabilities for the Markov chain corresponding to the best response process over
the game in Example 1

suboptimally. As we will show, log-linear learning acts as a method for selecting one of the (possibly

many) stationary distributions of a best response process.

Definition 6. Given a game G = (N, {Ai}i∈N , {Ui}i∈N ), and an initial joint action a(0) ∈ A, the

log-linear learning rule proceeds by repeating the following steps at each time t ∈ N :

(1) Select an agent i ∈ N uniformly at random.

(2) Agent i selects an action probabilistically, according to:

Pr[ai(t+ 1) = ai] =
exp (βUi(ai, a−i(t))∑

a′i∈Ai
exp (βUi(a′i, a−i(t))

(1.3)

where β is a design parameter.

(3) The ensuing joint action at time t+ 1 is

a(t+ 1) = (ai(t+ 1), a−i(t)) .

As parameter β → ∞, an agent updating according to (1.3) chooses a utility maximizing

action with higher probability, and as β → 0, an updating agent tends to choose uniformly at

random. For any fixed, finite β > 0, the log-linear learning process defines an aperiodic and

irreducible Markov chain over A with transition matrix P β. Because the chain is aperiodic and
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Notation and Terminology

• N = {1, 2, . . . , n} - set of agents

• Ai - agent i’s finite action set

• A :=
∏
i∈N Ai - the joint action space

• a = (a1, a2, . . . ai, . . . , an) = (ai, a−i) ∈ A - a joint action

• W : A → R - the system objective function.

• Ui : A → R - agent i’s utility function

• MCi(a) - agent i’s marginal contribution to the system objective at joint action a ∈ A

• φ : A → R - the potential function. Corresponds to the objective, W , when Ui =
MCi, ∀i ∈ N .

irreducible is has a unique stationary distribution, πβ. When the underlying game is a potential

game with potential function φ, the stationary distribution associated with the underlying Markov

chain is given by

π(a) =
exp(βφ(a))∑
a′∈A exp(βφ(a)

) (1.4)

From (1.4) it is straightforward to see that

lim
β→∞

∑
a∈arg maxφ(a)

πβ(a) = 1. (1.5)

That is, as β → ∞, the stationary distribution, πβ, converges to a distribution, π, with full

support on the potential maximizing actions. This limiting distribution is one of possibly many

stationary distributions associated with the best response process. Hence, we often say that log-

linear learning selects the desirable stationary distribution of the best response process. We refer

to actions belonging to the support of this limiting distribution as stochastically stable, which we

formally define in Appendix A.
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1.4 Formal summary of contributions

In this section, we summarize the model associated with each of the three main contributions

of this dissertation, and then formally state each contribution.7

Research question #1: When is fast convergence to near-optimal collective behavior

possible in a distributed system?

Here, we consider a game with agents N = {1, 2, . . . , n}. Each agent i ∈ N has a finite action

set denoted by Ai and a utility function Ui : A → R, where A =
∏
i∈N Ai denotes the set of joint

actions. We express an action profile a ∈ A as (ai, a−i) where a−i = (a1, . . . , ai−1, ai+1, . . . , an)

denotes the actions of all agents other than agent i. We denote a game G by the tuple G =

(N, {Ai}i∈N , {Ui}i∈N )

Definition 7. A game G is a semi-anonymous potential game if there exists a partition N =

(N1, N2, . . . , Nm) of N such that the following conditions are satisfied:

(i) For any population N` ∈ N and agents i, j ∈ N` we have Ai = Aj . Accordingly, we say

population N` has action set Ā` = {ā1
` , ā

2
` , . . . , ā

s`
` }8 where s` denotes the number of actions

available to population N`. For simplicity, let p(i) ∈ {1, . . . ,m} denote the index of the population

associated with agent i. Then, Ai = Āp(i) for all agents i ∈ N .

(ii) For any population N` ∈ N , let

X` =

{(
v1
`

n
,
v2
`

n
, . . . ,

vs``
n

)
≥ 0 :

s∑̀
k=1

vk` = |N`|
}

(1.6)

represent all possible aggregate action assignments for the agents within population N`. Here, the

utility function of any agent i ∈ N` can be expressed as a lower-dimensional function of the form

Ūi : Āp(i) ×X → R where X = X1 × · · · ×Xm. More specifically, the utility associated with agent

i for an action profile a = (ai, a−i) ∈ A is of the form

Ui(a) = Ūi(ai, a|X)

7 To ensure chapters are self-contained, we will repeat the formal model and definitions below in each.
8 We use the notation Ā` to represent the action set of the `th population, whereas Ai represents the action set

of the ith agent.
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where

a|X = (a|X1 , a|X2 , . . . , a|Xm) ∈ X, (1.7)

a|Xj =
1

n

{∣∣∣{j ∈ N` : aj = āk` }
∣∣∣}
k=1,...,s`

. (1.8)

The operator ·|X captures each population’s aggregate behavior in an action profile ·.

(iii) There exists a potential function φ : X → R such that for any a ∈ A and agent i ∈ N with

action a′i ∈ Ai,

Ui(a)− Ui(a′i, a−i) = φ(a|X)− φ((a′i, a−i)|X). (1.9)

Recall that assigning agents’ utilities to be their marginal contribution to the system objective

defines a potential game with φ(a) = W (a), ∀a ∈ A, i.e., the potential function is equal to the

system objective function. Hence, we are often interested in studying algorithms which maximize

the system potential. We now state Theorem 1, which is the main contribution of Chapter 2.

Theorem 1. Let G = (N, {Ai}, {Ui}) be a semi-anonymous potential game with aggregate state

space X and potential function φ : X → [0, 1]. Suppose agents play according to a mild variant of

log-linear learning, to be defined formally in Chapter 2. Suppose further that the following conditions

are met:

(i) The potential function is λ-Lipschitz, i.e., there exists λ ≥ 0 such that

|φ(x)− φ(y)| ≤ λ‖x− y‖1, ∀x, y ∈ X.

(ii) The number of players within each population is sufficiently large:

m∑
i=1

|Ni|2 ≥
m∑
i=1

|Āi| −m.

For any fixed ε ∈ (0, 1), if β is sufficiently large, i.e.,

β ≥ max

{
4m(s− 1)

ε
log 2ms,

4m(s− 1)

ε
log

8msλ

ε

}
, (1.10)

then

E[φ(a(t)|X)] ≥ max
x∈X

φ(x)− ε (1.11)



www.manaraa.com

17

for all

t ≥ 22msc1e
3βm(m(s− 1))!2n

4α

(
log log(n+ 1)ms−m + log β + 2 log

1

ε

)
(1.12)

where c1 is a constant that depends only on s.

Observe that for a fixed number of populations, the convergence time grows as n log log n.

This theorem also highlights the role of system heterogeneity, i.e., m > 1 distinct populations,

on convergence times of the process: small amounts of heterogeneity do not have a catastrophic

impact on worst-case convergence times, whereas significant heterogeneity may slow the process

considerably.

Research question #2: Can agents in a distributed system learn near-optimal corre-

lated behavior despite severely limited information about one another’s behavior?

Here, we consider the framework of finite strategic form games where each agent i ∈ N is

associated with a finite action set Ai and a utility function Ui : A → [0, 1]. We focus on the

class of coarse correlated equilibria [6]. A coarse correlated equilibrium is characterized by a joint

distribution q = {qa}a∈A ∈ ∆(A), where ∆(A) represents the simplex over the finite set A, such

that for any agent i ∈ N and action a′i ∈ Ai,

∑
a∈A

Ui(ai, a−i)q
a ≥

∑
a∈A

Ui(a
′
i, a−i)q

a. (1.13)

We say a coarse correlated equilibrium q∗ is efficient if it maximizes the sum of the expected payoffs

of the agents, i.e.,

q∗ ∈ arg max
q∈CCE

∑
i∈N

∑
a∈A

Ui(a)qa, (1.14)

where CCE ⊂ ∆(A) denotes the set of coarse correlated equilibria. It is well known that CCE 6= ∅

for any game G.

Note that the set of coarse correlated equilibria contains the set Nash equilibria; hence, the

sum of agents’ average payoff in an efficient correlated equilibrium is at least as large as the sum

of agents’ payoffs in an efficient Nash equilibrium.
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We formally develop a learning algorithm in Chapter 3 which converges (in probability) to

an efficient correlated equilibrium. Convergence to this equilibrium requires a degree of coupling

in agents’ utilities, which we refer to as interdependence.

Definition 8. A game G with agents N = {1, 2, . . . , n} is said to be interdependent if, for every

a ∈ A and every proper subset of agents J ⊂ N , there exists an agent i /∈ J and a choice of actions

a′J ∈
∏
j∈J Aj such that Ui(a

′
J , a−J) 6= Ui(aJ , a−J).

Roughly speaking, the definition of interdependence states that it is not possibly to partition

the group of agents into two sets whose actions do not impact one another’s payoffs.

The following theorem characterizes the limiting behavior associated with the algorithm we

will propose in Chapter 3. Paramters ε > 0 and δ > 0 are small exploration rates which will be

defined formally in Chapter 3.

Theorem 2. Let G = (N, {Ui}, {Ai}) be a finite interdependent game. First, suppose q(S)∩CCE 6=

∅. Given any probability p < 1, if the exploration rate ε is sufficiently small, and if δ = ε, then for

all sufficiently large times t,

Pr

[
q(s(t)) ∈ arg max

q∈q(S)∩CCE

∑
i∈N

∑
a∈A

Ui(a)qa

]
> p.

Alternatively, suppose q(S) ∩ CCE = ∅. Given any probability p < 1, if the exploration rate ε is

sufficiently small and δ = ε, then for all sufficiently large times t,

Pr

[
q(s(t)) ∈ arg max

q∈q(S)

∑
i∈N

∑
a∈A

Ui(a)qa

]
> p.

The condition q(S) ∩CCE 6= ∅ implies the agents can realize specific joint distributions that

are coarse correlated equilibria through the joint strategy set S. When this is the case, the above

algorithm ensures the agents predominantly play a strategy s ∈ S where the resulting joint distri-

bution q(s) corresponds to the efficient coarse correlated equilibrium. Alternately, the condition

q(S) ∩ CCE = ∅ implies there are no agent strategies that can characterize a coarse correlated

equilibrium. When that is the case, the above algorithm ensures the agents predominantly play
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strategies that have full support on the action profiles a ∈ A that maximize the sum of the agents

payoffs, i.e., arg maxa∈A
∑

i∈N Ui(a).

Research question #3: How does the structure of agent interaction impact a dis-

tributed system’s vulnerability to adversarial manipulation?

We use graphical coordination games, introduced in [13,60], to study the impact of adversarial

manipulation. The foundation of a graphical coordination game is a simple two agent coordination

game, where each agent must choose between one of two alternatives, {x, y}, with payoffs depicted

by the following payoff matrix which we denote by u(·):

x y

x 1 + α, 1 + α 0, 0

y 0, 0 1, 1

2× 2 coordination game, g, with utilities u(ai, aj), ai, aj ∈ {x, y}, and payoff gain α > 0

where α > 0 defines the relative quality of conventions (x, x) over (y, y). Both agents prefer to

agree on a convention, i.e., (x, x) or (y, y), than disagree, i.e., (x, y) or (y, x), with a preference

to agreeing on (x, x). The goal of deriving local agent dynamics which lead to the efficient Nash

equilibrium (x, x) is challenging because of the existence of the inefficient Nash equilibrium (y, y).

Deviating from (y, y) for an individual agent is accompanied by an immediate payoff loss of 1 to 0;

hence, myopic agents may be reluctant to deviate, stabilizing the inefficient equilibrium (y, y).

This two player coordination game can be extended to an n-player graphical coordination

game [32, 49, 66], where the interactions between the agents N = {1, 2, . . . , n} is described by an

underlying graph G = (N,E) where E ⊆ N ×N denotes the interdependence of agents’ objectives.

More formally, an agent’s total payoff is the sum of payoffs it receives in the two player games played

with its neighbors Ni = {j ∈ N : (i, j) ∈ E}, i.e., for a joint decision a = (a1, . . . , an) ∈ {x, y}n,

the utility of agent i is

Ui(a1, . . . , an) =
∑
j∈Ni

u(ai, aj). (1.15)
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Log-linear learning [9, 57] is one distributed decision making rule that selects the efficient

equilibrium, ~x, in the graphical coordination game described above. Although agents predominantly

maximize their utilities under log-linear learning, selection of the efficient equilibrium is achieved

by allowing agents to choose suboptimally with some small probability that decreases exponentially

with respect to the associated payoff loss.

We study the potential for adversarial manipulation in the context of the above graphical

coordination games. Here, we model the adversary as additional nodes/edges in our graph, where

the action selected by these adversaries (which we fix as the inferior convention y) impacts the utility

of the neighboring agents and thereby influences the agents’ decision-making rule as specified by

log-linear learning. We focus on three different models of adversary behavior, referred to as fixed,

intelligent; mobile, random; and mobile, intelligent.

• A fixed intelligent adversary aims to influence a fixed set S ⊆ N . To these agents the

adversary appears to be a neighbor who always selects alternative y. We assume that S is

selected based on the graph structure G and α.

• A mobile, random adversary connects to a random collection of agents S(t) ⊆ N at each

time, t ∈ N using no information on graph structure, G, or payoff gain, α.

• A mobile, intelligent agent connects to a collection of agents, S(t) ⊆ N , at each time, t ∈ N

using information on graph structure, G, payoff gain α, and the current action profile, a(t).

We formally define each of these three models for adversarial manipulation in Chapter 4.

Consider the situation where agents in N interact according to the graphical game G, and an

adversary seeks to convert as many agents in N to play action y as possible. At each time, t ∈ N

the adversary attempts to influence a set of agents S(t) ⊆ N by posing as a friendly agent who

always plays action y. Agents’ utilities, Ũ : A × 2N → R, are now a function of adversarial and
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friendly behavior, defined by:

Ũi((ai, a−i), S) =



Ui(ai, a−i) if i /∈ S

Ui(ai, a−i) if ai = x

Ui(ai, a−i) + 1 if i ∈ S, ai = y

(1.16)

where (ai, a−i) ∈ A represents friendly agents’ joint action, and S ⊆ N represents the set influenced

by the adversary. If i ∈ S(t), agent i receives an additional payoff of 1 for coordinating with the

adversary at action y at time t ∈ N; to agents in S(t) the adversary appears to be a neighbor

playing action y. By posing as a player in the game, the adversary has manipulated the utilities of

agents belonging to S, providing an extra incentive to choose the inferior alternative, y.

Suppose agents revise their actions according to log-linear learning, where the utility, Ui

defined in (4.1) is replaced by Ũi in (4.4).

A graphical coordination game G is universally resilient to an adversary if ~x is strictly stochas-

tically stable for all possible influenced sets S(t), t ∈ N and adversarial capability, k ≤ n. The

following theorem provides sufficient conditions that ensure G is universally resilient. For sets

S, T ⊆ N , define d(S, T ) := |{{i, j} ∈ E : i ∈ S, j ∈ T}|.

Theorem 3. Let G = (N,E), and suppose an adversary influences some set S(t) with |S(t)| = k

at each t ∈ N. If

α >
|T | − d(T,N \ T )

d(T,N)
, ∀T ⊆ N (1.17)

Then ~x is strictly stochastically stable. In particular, if |S(t)| = N for all t ∈ N, (4.5) is also a

necessary condition for strict stochastic stability of ~x.

Next, we analyze the case where agents are arranged according to a line. Values of α for

which each type of agent can stabilize ~y in the line are summarized below and in Figure 4.1. Formal

theorem statements associated with each are provided in Chapter 4.

• A fixed, intelligent adversary with capability k can stabilize joint action ~y when α <

k /(n− 1) (Theorem 8).
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fixed, intelligent, k < n-1 (Thm 4) 

fixed, intelligent, k = n-1 (Thm 4) 

mobile, random, k ≤ n-1 (Thm5) 

mobile, intelligent, k = 1 (Thm 6) 

mobile, intelligent, k > 1 (Thm 6) 

any adversary, k = n (Thm 4) 

Payoff gain, α 

α < k/(n-1) 

α < n/(n-1) 

α < n/(n-1) 

α < 1 

α < 1 

α < 1 

n/(n-1) 1 n/(2(n-1)) 
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Figure 1.3: Values of α for which each type of adversary can stabilize joint action ~y in an n-agent line

• A mobile, random adversary with capability k ≤ n − 1 can stabilize joint action ~y when

α < 1 (Theorem 9).

• A mobile, intelligent adversary with capability k = 1 can stabilize joint action ~y when

α < 1 (Theorem 10).

• A mobile, intelligent adversary with capability k ≥ 2 can stabilize joint action ~y when

α < n/(n− 1) (Theorem 10).

Note that a mobile, random adversary’s influence is the same for any capability k with 1 ≤ k ≤ n−1.

Similarly, a mobile, intelligent adversary does not increase its influence on agents in a line by

increasing its capability above k = 2.

In the forthcoming chapters, we fully develop these three main contribution areas.
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Fast Convergence in Semi-Anonymous Potential Games

When is fast convergence to a near optimal solution possible?

Emergent collective behavior for game theoretic learning rules has been studied extensively in

the literature, e.g., fictitious play [19,37,47], regret matching [27], and log-linear learning [1,9,57].

Although many of these learning rules have desirable asymptotic guarantees, their convergence

times either remain uncharacterized or are prohibitively long [14,26,31,57]. Characterizing conver-

gence rates is key to determining whether a distributed algorithm is desirable for system control.

In many multi-agent systems, the agent objective functions can be designed to align with the

system-level objective function, yielding a potential game [48] whose potential function is precisely

the system objective function. Here, the optimal collective behavior of a multi-agent system corre-

sponds to the Nash equilibrium that optimizes the potential function. Hence, learning algorithms

which converge to this efficient Nash equilibrium have proven useful for distributed control.

Log-linear learning is one algorithm that accomplishes this task [9]. Log-linear learning is a

perturbed best reply process where agents predominantly select the optimal action given their beliefs

about other agents’ behavior; however, the agents occasionally make mistakes, selecting suboptimal

actions with a probability that decays exponentially with respect to the associated payoff loss. As

noise levels approach zero, the resulting process has a unique stationary distribution with full

support on the efficient Nash equilibria. By designing agents’ objective functions appropriately,

log-linear learning can be used to define distributed control laws which converge to optimal steady-

state behavior in the long run.
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Unfortunately, worst-case convergence rates associated with log-linear learning are exponen-

tial in the game size [57]. This stems from inherent tension between desirable asymptotic behavior

and convergence rates. The tension arises because small noise levels are necessary to ensure that

the mass of the stationary distribution lies primarily on the efficient Nash equilibria; however, small

noise levels also make it difficult to exit inefficient Nash equilibria, degrading convergence times.

Positive convergence rate results for log-linear learning and its variants are beginning to

emerge for specific game structures [4, 33, 49, 57]. For example, in [49] the authors study the

convergence rates of log-linear learning for a class of coordination games played over graphs. They

demonstrate that underlying convergence rates are desirable provided that the interaction graph

and its subgraphs are sufficiently sparse. Alternatively, in [57] the authors introduce a variant of

log-linear learning and show that convergence times grow roughly linearly in the number of players

for a special class of congestion games over parallel networks. They also show that convergence

times remain linear in the number of players when players are permitted to exit and enter the game.

Although these results are encouraging, the restriction to parallel networks is severe and hinders

the applicability of such results to distributed engineering systems.

We focus on identifying whether the positive convergence rate results above extend beyond

symmetric congestion games over parallel networks to games of a more general structure relevant

to distributed engineering systems. Such guarantees are not automatic because there are many

simplifying attributes associated with symmetric congestion games that do not extend in general

(see Example 4). The main contributions of this chapter are as follows:

– We formally define a subclass of potential games, called semi-anonymous potential games, which

are parameterized by populations of agents where each agent’s objective function can be evaluated

using only information regarding the agent’s own decision and the aggregate behavior within each

population. Agents within a given population have identical action sets, and their objective func-

tions share the same structural form. The congestion games studied in [57] could be viewed as a

semi-anonymous potential game with only one population.1

1 Semi-anonymous potential games can be viewed as a cross between a potential game and a finite population
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– We introduce a variant of log-learning learning that extends the algorithm in [57]. In Theorem 1,

we prove that the convergence time of this algorithm grows roughly linearly in the number of

agents for a fixed number of populations. This analysis explicitly highlights the potential impact

of system-wide heterogeneity, i.e., agents with different action sets or objective functions, on the

convergence rates. Furthermore, in Example 6 we demonstrate how a given resource allocation

problem can be modeled as a semi-anonymous potential game.

– We study the convergence times associated with our modified log-linear learning algorithm when

the agents continually enter and exit the game. In Theorem 4, we prove that the convergence time

of this algorithm remains roughly linear in the number of agents provided that the agents exit and

enter the game at a sufficiently slow rate.

The forthcoming analysis is similar in structure to the analysis presented in [57]. We highlight

the explicit differences between the two proof approaches throughout, and directly reference lemmas

within [57] when appropriate. The central challenge in adapting and extending the proof in [57]

to the setting of semi-anonymous potential games is dealing with the growth of the underlying

state space. Note that the state space in [57] is characterized by the aggregate behavior of a single

population while the state space in our setting is characterized by the Cartesian product of the

aggregate behavior associated with several populations. The challenge arises from the fact that the

employed techniques for analyzing the mixing times of this process, i.e., Sobolev constants, rely

heavily on the structure of this underlying state space.

2.1 Semi-Anonymous Potential Games

Consider a game with agents N = {1, 2, . . . , n}. Each agent i ∈ N has a finite action set

denoted by Ai and a utility function Ui : A → R, where A =
∏
i∈N Ai denotes the set of joint

actions. We express an action profile a ∈ A as (ai, a−i) where a−i = (a1, . . . , ai−1, ai+1, . . . , an)

denotes the actions of all agents other than agent i. We denote a game G by the tuple G =

game [10].
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(N, {Ai}i∈N , {Ui}i∈N )2 .

Definition 9. A game G is a semi-anonymous potential game if there exists a partition N =

(N1, N2, . . . , Nm) of N such that the following conditions are satisfied:

(i) For any population N` ∈ N and agents i, j ∈ N` we have Ai = Aj . Accordingly, we say

population N` has action set Ā` = {ā1
` , ā

2
` , . . . , ā

s`
` }3 where s` denotes the number of actions

available to population N`. For simplicity, let p(i) ∈ {1, . . . ,m} denote the index of the population

associated with agent i. Then, Ai = Āp(i) for all agents i ∈ N .

(ii) For any population N` ∈ N , let

X` =

{(
v1
`

n
,
v2
`

n
, . . . ,

vs``
n

)
≥ 0 :

s∑̀
k=1

vk` = |N`|
}

(2.1)

represent all possible aggregate action assignments for the agents within population N`. Here, the

utility function of any agent i ∈ N` can be expressed as a lower-dimensional function of the form

Ūi : Āp(i) ×X → R where X = X1 × · · · ×Xm. More specifically, the utility associated with agent

i for an action profile a = (ai, a−i) ∈ A is of the form

Ui(a) = Ūi(ai, a|X)

where

a|X = (a|X1 , a|X2 , . . . , a|Xm) ∈ X, (2.2)

a|Xj =
1

n

{∣∣∣{j ∈ N` : aj = āk` }
∣∣∣}
k=1,...,s`

. (2.3)

The operator ·|X captures each population’s aggregate behavior in an action profile ·.

(iii) There exists a potential function φ : X → R such that for any a ∈ A and agent i ∈ N with

action a′i ∈ Ai,

Ui(a)− Ui(a′i, a−i) = φ(a|X)− φ((a′i, a−i)|X). (2.4)

If each agent i ∈ N is alone in its respective partition, the definition of semi-anonymous potential

games is equivalent to that of exact potential games in [48].

2 For brevity, we refer to G by G = (N, {Ai}, {Ui}).
3 We use the notation Ā` to represent the action set of the `th population, whereas Ai represents the action set

of the ith agent.
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Example 3 (Congestion Games [8]). Consider a congestion game with players N = {1, . . . , n} and

roads R = {r1, r2, . . . , rk}. Each road r ∈ R is associated with a congestion function Cr : Z+ → R,

where Cr(k) is the congestion on road r with k total users. The action set of each player i ∈ N

represents the set of paths connecting player i’s source and destination, and has the form Ai ⊆ 2R.

The utility function of each player i ∈ N is given by

Ui(ai, a−i) = −
∑
r∈ai

Cr(|a|r),

where |a|r = |{j ∈ N : r ∈ aj}| is the number of players in joint action a whose path contains road

r. This game is a potential game with potential function φ : X → R

φ(a|X) = −
∑
r∈R

|a|r∑
k=1

Cr(k). (2.5)

When the players’ action sets are symmetric, i.e., Ai = Aj for all agents i, j ∈ N , then a

congestion game is a semi-anonymous potential game with a single population. Such games, also

referred to as anonymous potential games, are the focus of [57]. When the players’ action sets are

asymmetric, i.e., Ai 6= Aj for at least one pair of agents i, j ∈ N , then a congestion game is a

semi-anonymous potential game where populations consist of agents with identical path choices.

The results in [57] are not proven to hold for such settings.

The following example highlights issues that arise when transitioning from a single population

to multiple populations.

Example 4. Consider a resource allocation game with n players and three resources, R = {r1, r2, r3}.

Let n be even and divide players evenly into populations N1 and N2. Suppose that players in N1

may select exactly one resource from {r1, r2}, and players in N2 may select exactly one resource

from {r2, r3}. The welfare garnered at each resource depends on how many players have selected

that resource; the resource-specific welfare functions are

Wr1(k) = 2k, Wr2(k) = min

{
3k,

3

2
n

}
, Wr3(k) = k.
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where k ∈ {0, 1, . . . , n} represents the number of agents selecting a given resource. The total system

welfare is

W (a) =
∑
r∈R

Wr(|a|r)

for any a ∈ A, where |a|r represents the number of agents selecting resource r under action profile

a. Assign each agent’s utility according to its marginal contribution to the system-level welfare:

for agent i and action profile a

Ui(a) = W (a)−W (∅, a−i) (2.6)

where ∅ indicates that player i did not select a resource. The marginal contribution utility in (2.6)

ensures that the resulting game is a potential game with potential function W [62].

If the agents had symmetric action sets, i.e., if Ai = {r1, r2, r3} for all i ∈ N , then this game

has exactly one Nash equilibrium with n/2 players at resource r1 and n/2 players at resource r2.

This Nash equilibrium corresponds to the optimal allocation.

In contrast, the two population scenario above has many Nash equilibria, two of which are:

(i) an optimal Nash equilibrium in which all players from N1 select resource r1 and all players

from N2 select resource r2, and (ii) a suboptimal Nash equilibrium in which all players from N1

select resource r2 and all players from N2 select resource r3. This large number of equilibria will

significantly slow any equilibrium selection process, such as log-linear learning and its variants.

2.2 Main Results

Example 4 invites the question: can a small amount of heterogeneity break down the fast

convergence results of [57]? In this section, we present a variant of log-linear learning [9] that extends

the algorithm for single populations in [57]. In Theorem 1 we prove that for any semi-anonymous

potential game our algorithm ensures (i) the potential associated with asymptotic behavior is close

to the maximum and (ii) the convergence time grows roughly linearly in the number of agents for

a fixed number of populations. In Theorem 4 we show that these guarantees still hold when agents

are permitted to enter and exit the game. An algorithm which converges quickly to the potential
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function maximizer is useful for multi-agent systems because agent objective functions can often be

designed so that the potential function is identical to the system objective function as in Example 4.

2.2.1 Modified Log-Linear Learning

The following modification of the log-linear learning algorithm extends the algorithm in [57].

Let a(t) ∈ A be the joint action at time t ≥ 0. Each agent i ∈ N updates its action upon ticks of

a Poisson clock with rate αn/zi(t), where

zi(t) = |{k ∈ Np(i) : ak(t) = ai(t)}|,

and α > 0 is a design parameter which dictates the expected total update rate. A player’s update

rate is higher if he is not using a common action within his population. To continually modify

his clock rate, each player must know the value of zi(t), i.e., the number of players within his

population sharing his action choice, for all t ∈ R. In many cases, agents also need this information

to evaluate their utilities, e.g., when players’ utilities are their marginal contribution to the total

welfare, as in Example 4.

When player i’s clock ticks, he chooses action ai ∈ Āp(i) = Ai probabilistically according to

Prob[ai(t
+) = ai

∣∣ a(t)] =
eβUi(ai,a−i(t))∑

a′i∈Ai
eβUi(a

′
i,a−i(t))

=
eβφ(a(t)|X )∑

a′i∈Ai
eβφ((a′i,a−i(t))|X )

, (2.7)

for any ai ∈ Ai, where ai(t
+) indicates the agent’s revised action and β is a design parameter that

determines how likely an agent is to choose a high payoff action. As β → ∞, payoff maximizing

actions are chosen, and as β → 0, agents choose from their action sets with uniform probability.

The new joint action is of the form a(t+) = (ai(t
+), a−i(t)) ∈ A, where t ∈ R+ is the time

immediately before agent i’s update occurs. For a discrete time implementation of this algorithm

and a comparison with the algorithm in [57], please see Appendix B.1.1.

The expected number of updates per second for the continuous time implementation of our

modified log-linear learning algorithm is lower bounded by mαn and upper bounded by (|Ā1|+· · ·+



www.manaraa.com

30

|Ām|)αn. To achieve an expected update rate at least as fast as the standard log-linear learning

update rate, i.e., at least n per second, we set α ≥ 1/m. These dynamics define an ergodic,

reversible Markov process for any α > 0.

2.2.2 Semi-Anonymous Potential Games

Theorem 1 bounds the convergence time for modified log-linear learning in a semi-anonymous

potential game and extends the results of [57] to semi-anonymous potential games. For notational

simplicity, define s := | ∪mj=1 Aj |.

Theorem 1. Let G = (N, {Ai}, {Ui}) be a semi-anonymous potential game with aggregate state

space X and potential function φ : X → [0, 1]. Suppose agents play according to a mild variant of

log-linear learning, to be defined formally in Chapter 2. Suppose further that the following conditions

are met:

(i) The potential function is λ-Lipschitz, i.e., there exists λ ≥ 0 such that

|φ(x)− φ(y)| ≤ λ‖x− y‖1, ∀x, y ∈ X.

(ii) The number of players within each population is sufficiently large:

m∑
i=1

|Ni|2 ≥
m∑
i=1

|Āi| −m.

For any fixed ε ∈ (0, 1), if β is sufficiently large, i.e.,

β ≥ max

{
4m(s− 1)

ε
log 2ms,

4m(s− 1)

ε
log

8msλ

ε

}
, (1.10)

then

E[φ(a(t)|X)] ≥ max
x∈X

φ(x)− ε (1.11)

for all

t ≥ 22msc1e
3βm(m(s− 1))!2n

4α

(
log log(n+ 1)ms−m + log β + 2 log

1

ε

)
(1.12)

where c1 is a constant that depends only on s.
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We prove Theorem 1 in Appendix B.1.2. This theorem explicitly highlights the role of

system heterogeneity, i.e., m > 1 distinct populations, on convergence times of the process. For

the case when m = 1, Theorem 1 recovers the results of [57]. Observe that for a fixed number

of populations, the convergence time grows as n log log n. Furthermore, note that a small amount

of system heterogeneity does not have a catastrophic impact on worst-case convergence times as

suggested by Example 4.

It is important to note that our bound is exponential in the number of populations and in

the total number of actions. Therefore our results do not guarantee fast convergence with respect

to these parameters. However, our convergence rate bounds may be conservative in this regard.

Furthermore, as we will show in Section 2.3, a significantly smaller value of β may often be chosen

in order to further speed convergence while still retaining the asymptotic properties guaranteed in

(1.11).

2.2.3 Time Varying Semi-Anonymous Potential Games

In this section, we consider a trajectory of semi-anonymous potential games to model the

scenario where agents enter and exit the system over time,

G = {Gt}t≥0 = {N t, {Ati}i∈Nt , {U ti }i∈Nt}t≥0

where, for all t ∈ R+, the game Gt is a semi-anonymous potential game, and the set of active

players, N t, is a finite subset of N. We refer to each agent i ∈ N \ N t as inactive; an inactive

agent has action set Ati = ∅ at time t. Define X := ∪t∈R+Xt, where Xt is the finite aggregate

state space corresponding to game Gt. At time t, denote the partitioning of players per Definition 9

by N t = {N t
1, N

t
2, . . . , N

t
m}. We require that there is a fixed number of populations, m, for all

time, and that the j-th population’s action set is constant, i.e., ∀j ∈ {1, 2, . . . ,m}, ∀t1, t2 ∈ R+,

Āt1j = Āt2j . We write the fixed action set for players in the j-th population as Āj .

Theorem 4. Let G be a trajectory of semi-anonymous potential games with state space X and

time-invariant potential function φ : X → [0, 1]. Suppose agents play according to the modified
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log-linear learning algorithm and Conditions (i) and (ii) of Theorem 1 are satisfied. Fix ε ∈ (0, 1),

assume the parameter β satisfies (1.10) and the following additional conditions are met:

(iii) for all t ∈ R+, the number of players satisfies:

|N t| ≥ max

{
4αme−3β

22msc1m2(m(s− 1))!2
, 2βλ+ 1

}
, (2.8)

(iv) there exists k > 0 such that

|N t
i | ≥ |N t| / k, ∀i ∈ {1, 2, . . . ,m}, ∀t ∈ R+, (2.9)

(v) there exists a constant

Λ ≥ 8c0ε
−2e3β(6βλ+ eβk(s− 1)) (2.10)

such that for any t1, t2 with |t1 − t2| ≤ Λ,

∣∣{i ∈ N t1 ∪N t2 : At1i 6= At1i
}∣∣ ≤ 1, (2.11)

and, if i ∈ N t1 ∩N t2, then i ∈ N t
j for some j ∈ {1, . . . ,m} and for all time t ∈ [t1, t2], i.e., agents

may not switch populations over this interval. Here, c0 and c1 do not depend on the number of

players, and hence the constant Λ does not depend on n.

Then,

E[φ(a(t)|X )] ≥ max
x∈X(t)

φ(x)− ε (2.12)

for all

t ≥ |N0|e3βc0

(
(ms−m)! log(|N0|+ 2) + β

ε2

)
. (2.13)

Theorem 4 states that, if player entry and exit rates are sufficiently slow as in Condition (v),

then the convergence time of our algorithm is roughly linear in the number of players. However, the

established bound grows quickly with the number of populations. Note that selection of parameter

β impacts convergence time, as reflected in (2.13): larger β tends to slow convergence. However,

the minimum β necessary to achieve an expected potential near the maximum, as in (2.12), is

independent of the number of players, as given in (1.10). The proof of Theorem 4 follows a similar
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structure to the proof of Theorem 4 in [57] and is hence omitted for brevity. The significant technical

differences arise due to differences in the size of the state space when m > 1. These differences give

rise to Condition (iv) in our theorem.

2.3 Illustrative Examples

In this section, we consider resource allocation games with a similar structure to Example 4.

In each case, agents’ utility functions are defined by their marginal contribution to the system

welfare, W , as in (2.6). Hence, each example is a potential game with potential function W .

Modified log-linear learning defines an ergodic, continuous time Markov chain; we denote its

transition kernel by P and its stationary distribution by π. For relevant preliminaries on Markov

chains, please refer to Appendix A.1, and for a precise definition of the transition kernel and

stationary distribution associated with modified log-linear learning, please refer to Appendices B.1.1

and B.1.2.

Unless otherwise specified, we consider games with n players distributed evenly into popula-

tions N1 and N2. There are three resources, R = {r1, r2, r3}. Players in population N1 may choose

a single resource from {r1, r2} and players in population N2 may choose a single resource from

{r2, r3}. We represent a state by

x =
(
x1

1, x
1
2, x

2
2, x

2
3

)
, (2.14)

where nx1
1 and nx1

2 are the numbers of players from N1 choosing resources r1 and r2. Likewise,

nx2
2 and nx2

3 are the numbers of players from N2 choosing resources r2 and r3 respectively. Welfare

functions for each resource depend only on the number of players choosing that resource, and are

specified in each example. The system welfare for a given state is the sum of the welfare garnered

at each resource, i.e.,

W (x) = Wr1(nx1
1) +Wr2(n(x1

2 + x2
2)) +Wr3(nx2

3).

Player utilities are their marginal contribution to the total welfare, W , as in (2.6).
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In Example 5, we directly the compute convergence times as in Theorem 1:

min{t : EP t(y,·)W (x) ≥ max
x∈X

W (x)− ε, ∀y ∈ X}, (2.15)

for modified log-linear learning, the variant of [57], and standard log-linear learning. This direct

analysis is possible due to the example’s relatively small state space.

Example 5. Here, we compare convergence times of our log-linear learning variant, the variant

of [57], and standard log-linear learning. The transition kernels for each process are described in

detail in Appendix B.1.1.

Starting with the setup described above, we add a third population, N3. Agents in population

N3 contribute nothing to the system welfare and may only choose resource r2. Because the actions of

agents in population N3 are fixed, we represent states by aggregate actions of agents in populations

N1 and N2 as in (2.14). The three resources have the following welfare functions for each x =(
x1

1, x
1
2, x

2
2, x

2
3

)
∈ X:

Wr1(x) = 2nx1
1,

Wr2(x) = min

{
3(nx1

1 + nx2
1),

3

2
(nx1

2 + nx2
2)

}
,

Wr3(x) = nx2
3.

Our goal in this example is to achieve an expected total welfare that is within 98% of the maximum

welfare.

We fix the number of players in populations N1 and N2 at n1 = n2 = 7, and vary the number

of players in population n3 to examine the sensitivity of each algorithm’s convergence rate to the

size of N3.

In our variant of log linear learning, increasing the size of population N3 does not change

the probability that a player from population N1 or N2 will update next. However, for standard

log-linear learning and for the variant in [57], increasing the size of population N3 significantly

decreases the probability that players from N1 or N2 who are currently choosing resource r2 will
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be selected for update.4

We select β in all cases so that, as t→∞, the expected welfare associated with the resulting

stationary distribution is within 98% of its maximum. Then we examine the time it takes to come

within ε = 0.05 of this expected welfare. We multiply convergence times by the number of players,

n, to analyze the expected number of updates required to reach the desired welfare. These numbers

represent the convergence times when the expected total number of updates per unit time is held

constant as n increases. Table 2.1 depicts β values and expected numbers of updates.

For both log-linear learning and our modification, the required β to reach an expected welfare

within 98% of the maximum welfare is independent of n3 and can be computed using the expressions

πLLL
x ∝ eβW (x)

(
n1

nx1
1, nx

1
2

)(
n2

nx2
2, nx

2
3

)
, (2.16)

and πMLLL
x ∝ eβW (x). (2.17)

These stationary distributions can be verified using reversibility arguments with the standard and

modified log-linear learning probability transition kernels, defined in [57] and Appendix B.1.1 re-

spectively. Unlike standard log-linear learning and our variant, the required β to reach an expected

welfare of 98% of maximum for the log-linear learning variant of [57] does change with n3. For each

value of n, we use the probability transition matrix to determine the necessary values of β which

yield an expected welfare of 98% of its maximum.

Our algorithm converges to the desired expected welfare in fewer updates than both alternate

algorithms for all tested values of n3, showing that convergence rates for log linear learning and

the variant from [57] are both more sensitive to the number of players in population 3 than our

algorithm.5

We are able to determine convergence times in Example 5 using each algorithm’s probability

4 Recall that in our log-linear learning variant and the one introduced in [57], an updating player chooses a new
action according to (2.7); the algorithms differ only in agents’ update rates. In our algorithm, an agent i in population
Nj ’s update rate is αn/ zji (t), where zji (t) is the number of agents from population j playing the same action as agent
i at time t. In the algorithm in [57], agent i’s update rate is αn/ z̃i(t), where z̃i(t) is the total number of agents
playing the same action as agent i.

5 A high update rate for players in population N3 was undesirable because they contribute no value. While this
example may seem contrived, mild variations would exhibit similar behavior. For example, consider a scenario in
which a relatively large population that contributes little to the total welfare may choose from multiple resources.
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transition matrix, P , because the state space is relatively small. Here, we directly compute the

distance of distribution µ(t) = µ(0)P t to the stationary distributions, πLLL and πMLLL for the

selected values of β, where P and π. Examples 6 and 8, however, have significantly larger state

spaces, making similar computations with the probability transition matrix unrealistic. Thus,

instead of computing convergence times as in (2.15) we repeatedly simulate our algorithm from

a worst case initial state and approximate convergence times based on average behavior. This

method does not directly give the convergence time of Theorem 1, but the average performance

over a sufficiently large number of simulations is expected to reflect expected behavior predicted

by the probability transition matrix.

Example 6. In this example we consider a scenario similar the previous example, without the

third population. That is, agents are evenly divided into two popultions, N1 and N2; we allow the

total number of agents to vary. Agents in N1 may choose either resource r1 or r2, and agents in

N2 may choose either resource r2 or r3. We consider welfare functions of the following form:

Wr1(x) =
ex

1
1 − 1

e2
, Wr2(x) =

e2x12+2x23 − 1

e2
, Wr3(x) =

e2.5x24 − 1

e2
. (2.18)

for x = (x1
1, x

1
2, x

2
2, x

2
3) ∈ X. Here, the global welfare optimizing allocation is ai = r2 for all i ∈ N ,

i.e., xopt = (0, 1/2, 1/2, 0). Similar to Example 4, this example has many Nash equilibria, two of

which are xopt and xne = (1/2, 0, 0, 1/2).

We simulated our algorithm with α = 1 / 4 starting from the inefficient Nash equilibrium,

xne. Here, β is chosen to yield an expected steady state welfare equal to 90% of the maximum. We

examine the time it takes the average welfare to come within ε = 0.05 of this expected welfare.

Simulation results are shown in Figure 2.1 averaged over 2000 simulations with n ranging

from 4 to 100. Average convergence times are bounded below by 2n log log n for all values of n,

and are bounded above by 4n log logn when n > 30. These results support Theorem 1.

Example 7. In this example we investigate convergence times for modified log-linear learning

when agents have larger action sets. We consider the situation where n agents are divided into two

populations, N1 and N2. Agents in N1 may choose from resources in A1 = {r1, r2, . . . , rk}, and
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Figure 2.1: Example 6, number of players vs. average convergence times. Here, there are two equal-sized
populations of agents, N1 and N2, and three resources r1, r2, and r3. Agents in population N1 may choose
from resources r1 and r2, and agents in population N2 may choose from resources r2 and r3. Welfare functions
are given in (2.18).

agents in population N2 may choose from resources in A2 = {rk, rk+1, . . . , r2k−1}. That is, each

agent may choose from k different resources, and the two populations share resource rk. Suppose

resource welfare functions are

Wrj (x) =


x / 4n if j 6= k

x2 / n2 if j = k,

(2.19)

and suppose agents’ utilities are given by their marginal contribution to the total welfare, as in

(2.6). We allow k to vary between 5 and 15, and n to vary between 4 and 50.

The welfare maximizing configuration is for all agents to choose resource rk; however, when

all agents in populations N1 and N2 choose resources rj and r` respectively, with j, ` 6= k, this

represents an inefficient Nash equilibrium. Along any path from this type of inefficient Nash

equilibrium to the optimal configuration, when n ≥ 4, at least d(n + 4)/8e agents must make

a utility-decreasing decision to move to resource rk. Moreover, the additional resources are all

alternative suboptimal choices each agent could make when revising its action; these alternate

choices further slow convergence times. Figure 2.2 shows the average time it takes to reach a

configuration whose welfare is 90% of the maximum, starting from an inefficient Nash equilibrium
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where all agents in N1 choose resource r1 and all agents in N2 choose resource r2k−1. Parameter β

is selected so that the expected welfare is at least 90% of the maximum in the limit as t→∞. For

each value of k, convergence times remain approximately linear in the number of agents, supporting

Theorem 1.6
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Figure 2.2: 7, number of agents vs. average time to reach 90% of the maximum welfare. Agents are
separated into two populations, N1 and N2. Agents in N1 choose from resources r1, r2, . . . , rk, and agents
in N2 choose from resources rk, rk+1 . . . , r2k−1, where k varies from 5 to 15. Resource welfare functions are
given by (2.19), agent utility functions are given by (2.6), and average convergence times are taken over 200
simulations.

In Example 8 we compare convergence times for standard and modified log-linear learning in

a sensor-target assignment problem.

Example 8 (Sensor-Target Assignment). In this example, we assign a collection of mobile sensors

to four regions. Each region contains a single target, and the sensor assignment should maximize

the probability of detecting the targets, weighted by their values. The targets in regions R =

{r1, r2, r3, r4} have values

v1 = 1, v2 = 2, v3 = 3, v4 = 4 (2.20)

respectively. Three types of sensors will be used to detect the targets: strong, moderate, and weak.

6 In this example, convergence times appear super-linear in the size of populations’ action sets. Note that the
bound in (1.12) is exponential in the the sum of the sizes of each population’s action set. Fast convergence with respect
to parameter s warrants future investigation; in particular, convergence rates for our log-linear learning variant may
be significantly faster than suggested in (1.12) under certain mild restrictions on resource welfare functions (e.g.,
submodularity) or for alternate log-linear learning variants (e.g., binary log-linear learning [5, 39]).
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Detection probabilities of these three sensor types are:

ps = 0.9, pm = 0.5, pw = 0.05. (2.21)

The numbers of strong and weak sensors are ns = 1 and nm = 5. We vary the number of weak

sensors, nw.

The expected welfare for area ri is the detection probability of the collection of sensors located

at ri weighted by the value of target i:

Wri(ks, km, kw) = vi

(
1− (1− ps)ks(1− pm)km(1− pw)kw

)
,

where ks, km and kw represent the number of strong, moderate, and weak sensors located at region

ri. The total expected welfare for configuration a is

W (a) =
∑
r∈R

Wr(|a|sr, |a|mr , |a|wr ),

where |a|sr, |a|mr , and |a|wr are the numbers of strong, moderate, and weak sensors choosing region r

in a.

We assign agents’ utilities according to their marginal contributions to the total welfare, W ,

as in (2.6). Our goal is to reach 98% of the maximum welfare. We set the initial state to be a

worst-case Nash equilibrium.7

To approximate convergence times, we simulate each algorithm with the chosen β value8

and compute a running average of the total welfare over 1000 simulations. In Figure 2.3 we show

the average number of iterations necessary to reach 98% of the maximum welfare.

7 The initial configuration is chosen by assigning weak agents to the highest value targets and then assigning
strong agents to lower value targets. In particular, agents are assigned in order of weakest to strongest according to
their largest possible marginal contribution. This constitutes an inefficient Nash equilibrium. As a similar example,
consider a situation with two sensors with detection probabilities p1 = 0.5 and p2 = 1, and two targets with values
v1 = 2 and v2 = 1. The assignment (sensor 1→ target 1, sensor 2→ target 2) is an inefficient Nash equilibrium,
whereas the opposite assignment is optimal. The large state space makes it infeasible to directly compute a stationary
distribution, and hence also infeasible to compute values of β that will yield precisely the desired expected welfare.
Thus, we use simulations to estimate the β which yields an expected welfare of 98% of the maximum.

8 To approximate the value of β which yields the desired steady-state welfare of 98% of maximum, we simulated
the standard and modified versions of log-linear learning for 1 × 106 iterations for a range of β values. We then
selected the β which yields an average welfare closest to the desired welfare during the final 5000 iterations. Note
that we could instead set β according to (1.10) for the modified log-linear learning algorithm; however, in order to
compare convergence times of modified and standard log-linear learning, we chose β to achieve approximately the
same expected welfare for both algorithms.
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For small values of nw, standard log-linear learning converges more quickly than our modifi-

cation, but modified log-linear learning converges faster than the standard version as nw increases.

The difference in convergence times is significant (≈ 1000 iterations) for intermediate values of

nw. As the total number of weak sensors increases, (1) the probabilities of transitions along the

paths to the efficient Nash equilibrium begin to increase for both algorithms, and (2) more sensor

configurations are close to the maximum welfare. Hence, convergence times for both algorithms

decrease as nw increases.

This sensor-target assignment problem does not display worst-case convergence times with

respect to the number of agents for either algorithm. However, it demonstrates a situation where

our modification can have an advantage over standard log-linear learning. In log-linear learning, the

probability that the strong sensor will update next decreases significantly as the number of agents

grows. In modified log-linear learning this probability remains fixed. This property is desirable

for this particular sensor-target assignment problem, since the single strong sensor contributes

significantly to the total system welfare.
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Figure 2.3: Example 8, number of weak sensors vs. average convergence times. Here, there are three types of
sensors which may choose from four resources. Sensor detection probabilities and resource values are given in
(2.21) and (2.20). We fix the number of strong and moderate sensors and vary the number of weak sensors.
This figure shows the average time it takes for the average welfare to reach 98% of maximum. The average is
taken over 1000 iterations, and convergence times correspond to a global update rate of 1 per second. Error
bars show standard deviations of the convergence times.
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Algorithm n3 β Expected welfare Expected # updates

Standard LLL 1 3.77 98% 9430
5 3.77 98% 11947
50 3.77 98% 40250
500 3.77 98% 323277

LLL Variant from [57] 1 2.39 98% 1325
5 2.44 98% 1589
50 2.83 98% 3342
500 3.72 98% 15550

Our LLL Variant 1 1.28 98% 743
5 1.28 98% 743
50 1.28 98% 743
500 1.28 98% 743

Table 2.1: This table corresponds to Example 5. There are three populations of agents, N1, N2, and N3,
and three resources r1, r2, and r3. Agents in population N1 may choose from resources r1 and r2, and agents
in population N2 may choose from resources r2 and r3. Agents in population N3 may only choose resource
r2. Welfare functions are given in (2.16); population N3 contributes nothing to the overall system welfare.
We examine the sensitivity of convergence times to the size of N3, and keep the sizes of populations N1 and
N2 fixed at 7. The third column of this table shows the values of β which yield an expected total welfare
within 98% of the maximum. These values of β are constant for standard log-linear learning and for our
variant, but grow with n for the algorithm in [57]. The final column shows the expected number of updates
to achieve the desired near-maximum welfare. This value is constant for our algorithm, but increases with
n for the other two. Global update rates are a design parameter dictated by parameter α; selecting a global
update rate of n per second (α = 1/m), convergence times would be a factor of n smaller than the number
of updates shown.
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In summary, we have extended the results of [57] to define dynamics for a class of semi-

anonymous potential games whose player utility functions may be written as functions of aggregate

behavior within each population. For games with a fixed number of actions and a fixed number of

populations, the time it takes to come arbitrarily close to a potential function maximizer is linear

in the number of players. This convergence time remains linear in the initial number of players

even when players are permitted to enter and exit the game, provided they do so at a sufficiently

slow rate.
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Learning Efficient Correlated Equlibria

Can agents in a distributed system learn a payoff maximizing correlated

equilibrium, despite severely limited information about one another’s behavior?

In this chapter, we focus on the scenario where the system objective is to maximize the sum

of agents’ payoffs. This type of objective can be useful when we wish to balance multiple local

objectives.

Agents’ average utilities can often be improved when they act according to a distribution over

multiple joint actions, instead of staying fixed at a single joint action. In many cases, the desired

collective behavior constitutes a coarse correlated equilibrium. A coarse correlated equilibrium is

a probability distribution over the joint action space such that no agent can improve its payoff by

deviating to a fixed action [6]. Previously, algorithms existed which converged to the set of coarse

correlated equilibrium, e.g., [27], without selecting any particular equilibrium; these algorithms

provided no performance guarantees. An algorithm which achieves a payoff maximizing coarse cor-

related equilibrium through deterministic, cyclic behavior is presented in [38]. However, predictable

cyclic behavior may be undesirable in many settings, e.g., in the presence of an adversary.

For concreteness, consider a mild variant of the Shapley game with the following payoff matrix

L M R

T 1,-ε -ε,1 0,0

M 0,0 1,-ε -ε,1

B -ε,1 0,0 1,-ε
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where ε > 0 is a small constant. In this game, there are two players (Row, Column); the row player

has three actions (T,M,B), and the column player has three actions (L,M,R). The numbers in the

table above are the players’ payoffs for each of the nine joint actions. The unique Nash equilibrium

for this game occurs when each player uses a probabilistic strategy that selects each of the three

actions with probability 1/3. This yields an expected payoff of approximately 1/3 to each player.

Alternatively, a joint distribution that places a mass of 1/6 on each of the six joint actions that

yield non-zero payoffs to the players yields an expected payoff of approximately 1/2 to each player.

Note that this distribution cannot be realized by independent strategies associated with the two

players, but instead represents a specific correlated equilibrium.

As the above example demonstrates, distributed learning algorithms that converge to ef-

ficient correlated equilibria can be desirable from a system-wide perspective. In line with this

theme, results presented in [35] rely on looking for cyclic behavior against a bounded mem-

ory opponent. Additionally, a recent result in [38] proposed a distributed algorithm that guar-

antees that the empirical frequency of the agents’ collective behavior will converge to an effi-

cient correlated equilibrium; however, convergence in empirical frequencies is attained through

deterministic cyclic behavior of the agents. For example, in the above Shapley game, the al-

gorithm posed in [38] guarantees that the collective behavior of the agents will follow the cycle

(T, L)→ (T,M)→ (M,M)→ (M,R)→ (B,R)→ (B,L)→ (T, L) with high probability. Follow-

ing this deterministic cycle results in an empirical frequency of play that equates to the efficient

correlated equilibrium highlighted above; however, at any time instance the players are not playing

a joint strategy in accordance with this efficient correlated equilibrium.

Predictable, cyclic behavior may be desirable from a system-wide perspective for many appli-

cations, e.g., data ferrying [12]. However, such behavior could be exploited in many other situations,

e.g., team versus team zero-sum games [29, 61]. By viewing each team as a single player, classical

results for two-player zero-sum games suggest that a team’s desired strategy is to play its secu-

rity strategy, which can be characterized by a probability distribution over the team’s joint action

space. Distributed learning algorithms that can stabilize specific joint strategies, such as correlated
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equilibria, may be necessary for providing strong performance guarantees in such settings.

In this chapter we present a distributed learning algorithm that ensures the agents collectively

play a joint strategy corresponding to the efficient correlated equilibrium. With regards to the

Shapley game, our algorithm guarantees that the agents collectively play the highlighted joint

distribution with high probability. Attaining such guarantees on the underlying joint strategy is

non-trivial as we aim to ensure desired correlated behavior through the design of learning rules

where individual agents make independent decisions in response to local information. The key

element of our algorithm that makes this correlation possible is the introduction of a common

random signal to the agents, which is incorporated into their local decision-making rule. Another

important feature of our algorithm is that it is completely uncoupled [18], i.e., agents make decisions

based only on their received utility and their observation of the common random signal. In such

settings, agents have no knowledge of the payoff or behavior of other agents, nor do they have any

information regarding the structural form of their utility functions.

It is important to highlight the recent results which focus on efficient centralized algorithms

for computing specific correlated equilibria [30, 52, 53]. Such algorithms often require a complete

characterization of the game which is unavailable in many engineering multiagent systems. Hence,

the applicability of such results to the design and control of multiagent systems may be limited.

3.1 Background

We consider the framework of finite strategic form games where there exists an agent set

N = {1, 2, . . . , n}, and each agent i ∈ N is associated with a finite action set Ai and a utility

function Ui : A → [0, 1] where A = A1×A2×· · ·×An denotes the joint action space. We represent

such a game by the tuple G = (N, {Ui}i∈N , {Ai}i∈N ).

In this chapter we focus on the class of coarse correlated equilibria [6]. A coarse correlated

equilibrium is characterized by a joint distribution q = {qa}a∈A ∈ ∆(A), where ∆(A) represents
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the simplex over the finite set A, such that for any agent i ∈ N and action a′i ∈ Ai,∑
a∈A

Ui(ai, a−i)q
a ≥

∑
a∈A

Ui(a
′
i, a−i)q

a, (3.1)

where a−i = {a1, . . . , ai−1, ai+1, . . . , an} denotes the collection of action of all players other than

player i.1 Informally, a coarse correlated equilibrium represents a joint distribution where each

agent’s expected utility for going along with the joint distribution is at least as good as his expected

utility for deviating to any fixed action. We say a coarse correlated equilibrium q∗ is efficient if it

maximizes the sum of the expected payoffs of the agents, i.e.,

q∗ ∈ arg max
q∈CCE

∑
i∈N

∑
a∈A

Ui(a)qa, (3.2)

where CCE ⊂ ∆(A) denotes the set of coarse correlated equilibria. It is well known that CCE 6= ∅

for any game G.

This chapter focuses on deriving a distributed learning algorithm that ensures the collec-

tive behavior of the agents converges to an efficient coarse correlated equilibrium. We adopt the

framework of repeated one-shot games, where a static game G is repeated over time and agents use

observations from previous plays of the game to formulate a decision. More specifically, a repeated

one-shot game yields a sequence of action profiles a(0), a(1), . . . , where at each time t ∈ {0, 1, 2, . . . }

the decision of each agent i is chosen independently accordingly to the agent’s strategy at time t,

which we denote by pi(t) = {paii (t)}ai∈Ai ∈ ∆(Ai).

A learning rule dictates how each agent selects its strategy given available information from

previous plays of the game. One type of learning rule, known as completely uncoupled or payoff

based [18], takes on the form:

pi(t) = Fi

(
{ai(τ), Ui(a(τ))}τ=0,...,t−1

)
(3.3)

Completely uncoupled learning rules represent one of the most informationally restrictive classes

of learning rules since the only knowledge that each agent has about previous plays of the game is

(i) the action the agent played and (ii) the utility the agent received.

1 We will express an action profile a ∈ A as a = (ai, a−i).



www.manaraa.com

47

We gauge the performance of a learning rule {Fi}i∈N by the resulting asymptotic guarantees.

With that goal in mind, let q(t) ∈ ∆(A) represent the agents’ collective strategy at time t, which

is of the form

q(a1,...,an)(t) = pa11 (t)× · · · × pann (t) (3.4)

where {pi(t)}i∈N are the individual agent strategies at time t. The goal of this chapter is to derive

learning rules that guarantee the agents’ collective strategy constitutes an efficient coarse correlated

equilibrium the majority of the time, i.e., for all sufficiently large times t,

Pr

[
q(t) ∈ arg max

q∈CCE

∑
i∈N

∑
a∈A

Ui(a)qa

]
≈ 1. (3.5)

Attaining this goal using learning rules of the form (3.3) is impossible because such rules do

not allow for correlation between the players, i.e., the agents’ collective strategies are restricted to

being of form (3.4). Accordingly, we modify the learning rules in (3.3) by giving each agent access

to a common random signal z(t) at each period t ∈ {0, 1, . . . } that is i.i.d. and drawn uniformly

from the interval [0, 1]. Now, the considered distributed learning rule takes the form

pi(t) = Fi

(
{ai(τ), Ui(a(τ)), z(t))}τ=0,...,t−1

)
. (3.6)

As we show in the following section, this common signal can be used as a coordinating entity to

reach collective strategies beyond the form given in (3.4).

3.2 A learning algorithm for attaining efficient correlated equilibria

In this section, we present a specific learning rule of the form (3.6) that guarantees the agents’

collective strategy constitutes an efficient coarse correlated equilibrium the majority of the time.

This algorithm achieves the desired convergence guarantees by exploiting the common random

signal z(t) through the use of signal-based strategies.

3.2.1 Preliminaries

Consider a situation where each agent i ∈ N commits to a signal-based strategy of the form

si : [0, 1] → Ai which associates with each signal z ∈ [0, 1] an action si(z) ∈ Ai. With an abuse
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of notation, we consider a finite parameterization of such signal-based strategies, which we refer

to as strategies, of the form Si = ∪Ω
ω=1(Ai)ω where Ω ≥ 1 is a design parameter identifying the

granularization of the agent’s possible strategies. A strategy si = (a1
i , . . . , a

ω
i ) ∈ Si, ω ≤ Ω, defines

a mapping of the form

si(z) =



a1
i if z ∈ [0, 1/ω)

a2
i if z ∈ [1/ω, 2/ω)

...
...

aωi if z ∈ [(ω − 1)/ω, 1].

(3.7)

These strategies divide the unit interval into at most Ω regions of equal length and associate each

region with a specific action in the agent’s action set. If the agents commit to a strategy profile

s = (s1, s2, . . . , sn) ∈ S =
∏
i∈N Si, the resulting joint strategy q(s) = {qa(s)}a∈A ∈ ∆(A) satisfies

qa(s) =

∫ 1

0

∏
i∈N

I{si(z) = ai}dz

where I{·} is the indicator function. Lastly, the set of joint distributions that can be realized by

the strategies S is

q(S) = {q ∈ ∆(A) : q(s) = q for some s ∈ S}.

3.2.2 Informal algorithm description

The forthcoming algorithm is reminiscent of the trial and error learning algorithm introduced

in [65] and can be viewed at a high level through the following diagram.

Evaluation Trial Acceptance

period k

times

period 
k

period 
k+1

xi(k) = {sb
i , mi} xi(k + 1)

3pk + 1, . . . , 3pk + 3p

Figure 3.1: Learning algorithm phases within each time period
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The times {1, 2, . . . } will be broken up into periods of length 3p̄ where p̄ > 1 is an interval

whose length will be defined formally below. At the beginning of each period k, each agent i ∈ N

has a local state variable of the form xi(k) = [sbi ,mi] where sbi ∈ Si is the agent’s baseline strategy

and mi is the agent’s mood. The agent’s baseline strategy corresponds to the strategy the agent

is accustomed to playing. The agent’s mood mi, which can either be Content or Discontent,

dictates how likely each agent is to select its baseline strategy during a given period. Roughly

speaking, a content agent is more likely to select its baseline strategy while a discontent agent is

more likely to try an alternate strategy.

Each period k > 0, which consists of the time steps {3p̄k + 1, . . . , 3p̄(k + 1)}, will be broken

up into three distinct phases called evaluation, trial, and acceptance. The behavior of the agents in

each of these phases is highlighted below:

– Evaluation Phase: The first phase is the evaluation phase. In this phase, each agent establishes

a baseline utility, ubi , associated with its current baseline strategy, sbi . All agents commit to their

baseline strategies during this entire phase.

– Trial Phase: The second phase is the trial phase. During this phase, each agent has the oppor-

tunity to experiment with an alternate trial strategy, sti, in order to determine whether changing

its baseline strategy could be advantageous. An agent’s mood determines how likely it is to exper-

iment. In particular, a content agent will use its baseline strategy sbi during the trial phase with

high probability. On the other hand, a discontent player is likely to experiment with a trial strategy

sti 6= sbi . The exact probabilities associated with this selection process will be described in detail in

the forthcoming section.

– Acceptance Phase: The third phase is the acceptance phase. Here, an agent who experimented

during the trial phase decides whether to accept its trial strategy or revert to its baseline strategy.

Agents who did not experiment during the trial phase commit to their baseline strategies and

observe payoff changes which occur due to others’ changes in strategy.



www.manaraa.com

50

3.2.3 Formal algorithm description

We begin by defining a constant c > n, an experimentation rate ε ∈ (0, 1), and the length

of a phase to be p̄ = d1/δnc+1e time steps, for some small δ ∈ (0, 1). A period consists of the

evaluation, trial, and acceptance phases, and hence is 3p̄ time steps long. Let xi = xi(k) = [sbi ,mi]

represent that state of each agent i ∈ N at the beginning of some period k ∈ {1, 2, . . . }. We will

formally present the algorithm using the same general structure given in previous section.

Agent Dynamics: Here we describe how individual agents make decisions within a given period.

Decisions of an agent i ∈ N are influenced purely by its state at the beginning of the k-th period,

xi(k), and by payoffs received during the k-th period. We specify agents’ behavior during the k-th

period for the three phases highlighted above.

– Evaluation Phase: The evaluation phase consists of the times t ∈ {3p̄k + 1, . . . , 3p̄k + p̄}.

Throughout this phase, each agent commits to its baseline strategy sbi . At the end of the phase,

each agent computes its average baseline utility,

ubi =
1

p̄

3p̄k+p̄∑
τ=3p̄k+1

Ui
(
sb1(z(τ), . . . , sbn(z(τ))

)
, (3.8)

where z(τ) denotes the common random signal observed at time τ . Here, ubi is viewed as an

assessment of the performance associated with the baseline strategy sbi .

– Trial Phase: After the evaluation phase comes the trial phase which consists of the times

t ∈ {(3p̄k+ p̄)+1, . . . , 3p̄k+2p̄}. During the trial phase each player i ∈ N may try a strategy other

than its baseline, and must commit to this trial strategy, sti ∈ Si, over the entire phase. Agents’

trial strategies are selected according to the following rule:

• Content, mi = C: When agent i is content, its trial strategy, sti ∈ Si, is chosen according

to the distribution

Pr
[
sti = si

]
=

 1− εc if si = sbi

εc / |Ai| for any si = ai ∈ Ai
(3.9)
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A strategy sti = ai means that agent i commits to playing action ai for the entire trial

phase of the k-th period, i.e., the strategy does not depend on the common random signal.

Observe that a content player predominantly selects its baseline strategy during the trial

phase.

• Discontent, mi = D: When agent i is discontent, its trial strategy, sti, is chosen randomly

from the set Si,

Pr
[
sti = si

]
= 1 / |Si| for all si ∈ Si. (3.10)

At the end of the trial phase, each agent computes its average utility:

uti =
1

p̄

3p̄k+2p̄∑
τ=3p̄k+p̄)+1

Ui
(
st1(z(τ), . . . , stn(z(τ))

)
. (3.11)

Here, uti is viewed as an assessment of the performance associated with the baseline strategy sti.

– Acceptance Phase: The last phase is the acceptance phase which consists of times t ∈ {(3p̄k+

2p̄) + 1, . . . , 3p̄k+ 3p̄}. The primary purpose of the acceptance phase is to further evaluate changes

in the payoffs between ubi and uti. Each agent i ∈ N commits to an acceptance strategy, denoted by

sai ∈ Si, over the entire acceptance phase. Each agent’s acceptance strategy is selected according

to the following.

• Content, mi = C: When agent i is content, its acceptance strategy is chosen as follows:

sai =

 sti if uti > ubi + δ,

sbi if uti ≤ ubi + δ.

(3.12)

That is, players only repeat their trial strategy if their performance was high enough relative

to the performance of the baseline strategy.

• Discontent, mi = D: When agent i is discontent, the acceptance strategy is set as sai = sti.

Following the acceptance phase, each agent computes its average utility:

uai =
1

p̄

3p̄k+3p̄∑
τ=(3p̄k+2p̄)+1

Ui
(
sa1(z(τ), . . . , san(z(τ))

)
. (3.13)
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Here, uai is viewed as an assessment of the performance associated with the baseline strategy sai .

State Dynamics: After the agent dynamics comes the state dynamics which specifies how the

state of each agent evolves. The state of each agent i ∈ N at the beginning of the k + 1-st stage,

i.e., xi(k + 1), is influenced purely its state at the beginning of the k-th period, i.e., xi(k), the

strategies sbi , s
t
i and sai , and the payoffs received during the k-th period. The state dynamics are

broken into the following cases:

– Content and No Experimentation, mi = C, sti = sbi : If agent i was content at the start of the k-th

period and did not experiment in the trial phase, its state at the beginning of the (k+ 1)-st period

is chosen as follows:

• If uai ≥ ubi − δ,

xi(k + 1) =


[
sai = sbi , C

]
w.p. 1− ε2c,[

sai = sbi , D
]

w.p. ε2c.

(3.14)

• If uai < ubi − δ,

xi(k + 1) =
[
sai = sbi , D

]
(3.15)

Accordingly, if the agent’s average payoff during the acceptance phase is low enough, then it will

become discontent.

– Content and Experimentation, mi = C, sti 6= sbi : If agent i was content at the start of the k-th

period and experimented during the trial phase, its state at the beginning of the (k + 1)-st period

is chosen as

xi(k + 1) = [sai , C] . (3.16)

In this case the agent’s average payoff during the acceptance phase does not impact its underlying

state dynamics.

– Discontent, mi = D: If agent i was discontent at the start of the k-th period, its state at the
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beginning of the (k + 1)-th period is chosen as follows

xi(k + 1) =

 [sai , C] w.p. ε1−uai ,

[sai , D] w.p. 1− ε1−uai .

(3.17)

Here, the agents are more likely to become content with strategies the yield higher average payoffs.

3.3 Main Result

Throughout this chapter we focus on games where there is some degree of coupling between

the utility functions of the agents. The following definition of interdependence, taken from [65],

captures this notion of coupling.

Definition 10. A game G with agents N = {1, 2, . . . , n} is said to be interdependent if, for every

a ∈ A and every proper subset of agents J ⊂ N , there exists an agent i /∈ J and a choice of actions

a′J ∈
∏
j∈J Aj such that Ui(a

′
J , a−J) 6= Ui(aJ , a−J).

Roughly speaking, the definition of interdependence states that it is not possibly to partition

the group of agents into two sets whose actions do not impact one another’s payoffs.

The following theorem characterizes the limiting behavior associated with the proposed al-

gorithm.

Theorem 2. Let G = (N, {Ui}, {Ai}) be a finite interdependent game. First, suppose q(S)∩CCE 6=

∅. Given any probability p < 1, if the exploration rate ε is sufficiently small, and if δ = ε, then for

all sufficiently large times t,

Pr

[
q(s(t)) ∈ arg max

q∈q(S)∩CCE

∑
i∈N

∑
a∈A

Ui(a)qa

]
> p.

Alternatively, suppose q(S) ∩ CCE = ∅. Given any probability p < 1, if the exploration rate ε is

sufficiently small and δ = ε, then for all sufficiently large times t,

Pr

[
q(s(t)) ∈ arg max

q∈q(S)

∑
i∈N

∑
a∈A

Ui(a)qa

]
> p.
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We prove Theorem 2 in Appendix B.2.

A few remarks are on order regarding Theorem 2. First, observe that the proposed algorithm

is of the form (3.6). Second, the condition q(S) ∩ CCE 6= ∅ implies the agents can realize specific

joint distributions that are coarse correlated equilibria through the joint strategy set S. When

this is the case, the above algorithm ensures the agents predominantly play a strategy s ∈ S

where the resulting joint distribution q(s) corresponds to the efficient coarse correlated equilibrium.

Alternately, the condition q(S)∩CCE = ∅ implies there are no agent strategies that can characterize

a coarse correlated equilibrium. When that is the case, the above algorithm ensures the agents

predominantly play strategies that have full support on the action profiles a ∈ A that maximize

the sum of the agents payoffs, i.e., arg maxa∈A
∑

i∈N Ui(a).

3.4 Illustrative Example

Here, we present an example where agents update their strategies according to the algorithm

above, and their actions converge to an efficient coarse correlated equilibrium.

Example 9. Consider a game with two players, (Row, Column), and the following payoff matrix:

L M R

T 0, 0 0, 1 0.85, 0.75

M 1, 0 0, 0 0, 0

B 0.75, 0.85 0, 0 0, 0

The efficient coarse correlated equilibrium in this game places probability 0.5 on joint action

(T,R), and probability 0.5 on joint action (B,L), i.e.,

q(T,R) = q(B,L) = 0.5, (3.18)

and qa = 0 for a /∈ {(T,R), (B,L)}. The expected utility associated with this coarse correlated

equilibrium is Ui(q) = 0.8.

For each value of ε in {0.15, 0.1, 0.015, 0.01}, we simulated our algorithm for 20 times over
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105 iterations, fixing δ = 0.14. The table below shows the percentage of the last 5× 104 iterations

spent in the efficient coarse correlated equilibrium as in (3.18).2

ε % time in efficient CCE

0.15 9%

0.1 16%

0.015 84%

0.01 87%

Note that as ε decreases, more time is spent in the efficient coarse correlated equilibrium, as

predicted by Theorem 2.

The majority of distributed learning literature has focused on identifying learning rules that

converge to Nash equilibria. However, alternate forms of behavior, such as correlated equilibrium,

can often lead to significant improvements in system-wide behavior. This chapter focuses on iden-

tifying learning rules that converge to joint distributions that do not necessarily constitute Nash

equilibria. In particular, we have a provided a distributed learning rule, similar in spirit to the

learning rule in [38], that ensuers agents play strategies that constitute efficient coarse correlated

equilibria. A mild variant of the proposed algorithm could also ensure the agents play strategies

that constitute correlated equilibria, as opposed to coarse correlated equilibria. Future work seeks

to investigate the applicability of such algorithms in the context of team versus team zero-sum

games.

2 We did not simulate our algorithm for smaller values of ε because convergence rates slow significantly as ε→ 0,
reducing the algorithm’s practicality. Next research steps include improving this algorithm’s convergence rates.
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Understanding Adversarial Influence in Distributed Systems

How can network structure in a distributed system create vulnerabilities to

adversarial influence?

Engineering and social systems often consist of many agents making decisions based on locally

available information. In an engineering system, a distributed decision making strategy can be

necessary when communication, computation, or sensing limitations preclude a centralized control

strategy. For example, a group of unmanned aircraft performing surveillance in a hostile area

may use a distributed control strategy to limit communication and thus remain undetected. Social

systems are inherently distributed: individuals typically make decisions based on personal objectives

and the behavior of friends and acquaintances. For example, the decision to adopt a recently

released technology, such as a new smartphone, may depend both on the quality of the item itself

and on friends’ choices.

While there are many advantages of distributed decision making, it can create vulnerability

to adversarial manipulation. Adversaries may attempt to influence individual agents by corrupting

the information available to them, creating a chain of events which could degrade the system’s

performance. Work in the area of cyber-physical systems has focused on reducing the potential

impact of adversarial interventions through detection mechanisms: detection of attacks in power

networks [28], estimation and control with corrupt sensor data [7, 15], and monitoring [54]. In

contrast to this research, our work focuses on characterizing the impact an adversary may have on

distributed system dynamics when no mitigation or detection measures are in place.
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We use graphical coordination games, introduced in [13,60], to study the impact of adversarial

manipulation. The foundation of a graphical coordination game is a simple two agent coordination

game, where each agent must choose between one of two alternatives, {x, y}, with payoffs depicted

by the following payoff matrix which we denote by u(·):

x y

x 1 + α, 1 + α 0, 0

y 0, 0 1, 1

2× 2 coordination game, g, with utilities u(ai, aj), ai, aj ∈ {x, y}, and payoff gain α > 0

where α > 0 defines the relative quality of conventions (x, x) over (y, y). Both agents prefer to

agree on a convention, i.e., (x, x) or (y, y), than disagree, i.e., (x, y) or (y, x), with a preference

to agreeing on (x, x). The goal of deriving local agent dynamics which lead to the efficient Nash

equilibrium (x, x) is challenging because of the existence of the inefficient Nash equilibrium (y, y).

Deviating from (y, y) for an individual agent is accompanied by an immediate payoff loss of 1 to 0;

hence, myopic agents may be reluctant to deviate, stabilizing the inefficient equilibrium (y, y).

This two player coordination game can be extended to an n-player graphical coordination

game [32, 49, 66], where the interactions between the agents N = {1, 2, . . . , n} is described by an

underlying graph G = (N,E) where E ⊆ N ×N denotes the interdependence of agents’ objectives.

More formally, an agent’s total payoff is the sum of payoffs it receives in the two player games played

with its neighbors Ni = {j ∈ N : (i, j) ∈ E}, i.e., for a joint decision a = (a1, . . . , an) ∈ {x, y}n,

the utility of agent i is

Ui(a1, . . . , an) =
∑
j∈Ni

u(ai, aj). (4.1)

Joint actions ~x := (x, x, . . . , x) and ~y := (y, y, . . . , y), where either all players choose x or all players

choose y, are Nash equilibria of the game; other equilibria may emerge depending on the structure

of graph G. In any case, ~x is the unique efficient equilibrium, since it maximizes agents’ total payoffs.

Graphical coordination games can model both task allocation in engineering systems as well as the

evolution of social convention in marketing scenarios.
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The goal in this setting is to prescribe a set of decision-making rules that ensures emergent

behavior is aligned with the efficient Nash equilibrium ~x irrespective of the underlying graph G and

the choice of α. Any such rule must be accompanied by a degree of noise (or mistakes) as agents must

be enticed to deviate from inefficient Nash equilibrium. Log-linear learning [9,57] is one distributed

decision making rule that selects the efficient equilibrium, ~x, in the graphical coordination game

described above. Although agents predominantly maximize their utilities under log-linear learning,

selection of the efficient equilibrium is achieved by allowing agents to choose suboptimally with

some small probability that decreases exponentially with respect to the associated payoff loss.

The equilibrium selection properties of log-linear learning extend beyond coordination games

to the class of potential games [48], which often can be used to model engineering systems where

the efficient Nash equilibrium is aligned with the optimal system behavior [40, 42, 63]. Hence, log-

linear learning can be a natural choice for prescribing control laws in many distributed engineering

systems [20, 24, 42, 59, 67], as well as for analyzing the emergence of conventions in social systems

[57, 64]. This prompts the question: can adversarial manipulation alter the emergent behavior of

log-linear learning in the context of graphical coordination games (or more broadly in distributed

engineering systems)?

We study this question in the context of the above graphical coordination games. Here, we

model the adversary as additional nodes/edges in our graph, where the action selected by these

adversaries (which we fix as the inferior convention y) impacts the utility of the neighboring agents

and thereby influences the agents’ decision-making rule as specified by log-linear learning. We

focus on three different models of adversary behavior, referred to as fixed, intelligent; mobile,

random; and mobile, intelligent.

• A fixed intelligent adversary aims to influence a fixed set S ⊆ N . To these agents the

adversary appears to be a neighbor who always selects alternative y. We assume that S is

selected based on the graph structure G and α.

• A mobile, random adversary connects to a random collection of agents S(t) ⊆ N at each
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time, t ∈ N using no information on graph structure, G, or payoff gain, α.

• A mobile, intelligent agent connects to a collection of agents, S(t) ⊆ N , at each time, t ∈ N

using information on graph structure, G, payoff gain α, and the current action profile, a(t).

We will discuss each type of adversary’s influence on an arbitrary graph, and then analyze the worst

case influence on a set of agents interacting according to a line. We specify the values of payoff gain

α for which an adversary can stabilize joint action ~y, showing that a mobile, intelligent agent can

typically stabilize joint action ~y for larger values of α than a mobile, random agent, and a mobile,

random agent can typically stabilize ~y for larger values of α than a fixed, intelligent agent.

4.1 The model

Suppose agents in N interact according to the graphical coordination game above, with

underlying graph G = (N,E), alternatives {x, y} and payoff gain α. We denote the joint action

space by A = {x, y}n, and we write

(ai, a−i) = (a1, a2, . . . , ai, . . . , an) ∈ A

when considering agent i’s action separately from other agents’ actions.

Now, suppose agents in N update their actions according to the log-linear learning algo-

rithm at times t = 0, 1, . . . , producing a sequence of joint actions a(0), a(1), . . .. We assume agents

begin with joint action, a(0) ∈ A, and let a(t) = (ai, a−i) ∈ A. At time t ∈ N, an agent i ∈ N

is selected uniformly at random to update its action for time t + 1; all other agents’ actions will

remain fixed. Agent i chooses its next action probabilistically according to:1

Pr[ai(t+ 1) = x | a−i(t) = a−i]

=
exp (β · Ui(x, a−i))

exp (β · Ui(x, a−i) + exp (β · Ui(y, a−i))
. (4.2)

1 Agent i’s update probability is also conditioned on the fact that agent i was selected to revise its action, which
occurs with probability 1 / n. For notational brevity we omit this throughout, and Pr[ai(t + 1) = A | a−i(t) = a−i],
for example, is understood to mean Pr[ai(t+ 1) = x | a−i(t) = a−i, i selected for update].
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Parameter β > 0 dictates an updating agent’s degree of rationality. As β →∞, agent i is increas-

ingly likely to select a utility maximizing action, and as β → 0, agent i tends to choose its next

action uniformly at random. The joint action at time t+ 1 is a(t+ 1) = (ai(t+ 1), a−i(t)).

Joint action, a ∈ A is strictly stochastically stable [17] under log-linear learning dynamics

if, for any ε > 0, there exist B <∞ and T <∞ such that

Pr[a(t) = a] > 1− ε, for all β > B, t > T (4.3)

where a(t) is the joint action at time t ∈ N under log-linear learning dynamics.

Joint action ~x is strictly stochastically stable under log-linear learning dynamics over graph-

ical coordination game G [9]. We will investigate conditions when an adversary can destabilize ~x

and stabilize an alternate equilibrium.

Consider the situation where agents in N interact according to the graphical game G, and

an adversary seeks to convert as many agents in N to play action y as possible.2 At each time,

t ∈ N the adversary attempts to influence a set of agents S(t) ⊆ N by posing as a friendly agent

who always plays action y. Agents’ utilities, Ũ : A × 2N → R, are now a function of adversarial

and friendly behavior, defined by:

Ũi((ai, a−i), S) =



Ui(ai, a−i) if i /∈ S

Ui(ai, a−i) if ai = x

Ui(ai, a−i) + 1 if i ∈ S, ai = y

(4.4)

where (ai, a−i) ∈ A represents friendly agents’ joint action, and S ⊆ N represents the set influenced

by the adversary. If i ∈ S(t), agent i receives an additional payoff of 1 for coordinating with the

adversary at action y at time t ∈ N; to agents in S(t) the adversary appears to be a neighbor

playing action y. By posing as a player in the game, the adversary has manipulated the utilities of

agents belonging to S, providing an extra incentive to choose the inferior alternative, y.

2 In this chapter we consider a single adversary which may influence multiple agents. Our models can be extended
to multiple adversaries whose objectives are either aligned or conflicting.
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Suppose agents revise their actions according to log-linear learning as in (4.2), where the

utility, Ui defined in (4.1) is replaced by Ũi in (4.4). An agent i ∈ N which revises its action at time

t ∈ N bases its new action choice on the utility Ũi(a(t), S(t)) if i ∈ S(t), increasing the probability

that agent i updates its action to y. By posing as a player in the coordination game, an adversary

manipulates agents’ utility functions.thereby modifying their decision making rules.

4.2 Summary of results

In the following sections, we will precisely define three models of adversarial behavior: fixed,

intelligent; mobile, random; and mobile, intelligent. Each type of adversary has a fixed capability,

k, i.e., |S(t)| = k for all t ∈ N. Our analysis of these models will provide insight into an adversary’s

influence on a general graph, G, and we derive exact bounds on α for adversarial influence on a

line. Values of α for which each type of agent can stabilize ~y in the line are summarized below and

in Figure 4.1.

• A fixed, intelligent adversary with capability k can stabilize joint action ~y when α <

k /(n− 1) (Theorem 8).

• A mobile, random adversary with capability k ≤ n − 1 can stabilize joint action ~y when

α < 1 (Theorem 9).

• A mobile, intelligent adversary with capability k = 1 can stabilize joint action ~y when

α < 1 (Theorem 10).

• A mobile, intelligent adversary with capability k ≥ 2 can stabilize joint action ~y when

α < n/(n− 1) (Theorem 10).

Note that a mobile, random adversary’s influence is the same for any capability k with 1 ≤ k ≤ n−1.

Similarly, a mobile, intelligent adversary does not increase its influence on agents in a line by

increasing its capability above k = 2.
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fixed, intelligent, k < n-1 (Thm 4) 

fixed, intelligent, k = n-1 (Thm 4) 

mobile, random, k ≤ n-1 (Thm5) 

mobile, intelligent, k = 1 (Thm 6) 

mobile, intelligent, k > 1 (Thm 6) 

any adversary, k = n (Thm 4) 

Payoff gain, α 
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Figure 4.1: Values of α for which each type of adversary can stabilize joint action ~y in an n-agent line

4.3 Main results

Here, we present a detailed version of the results summarized above.

4.3.1 Universal resilience to an adversary

A graphical coordination game G is universally resilient to an adversary if ~x is strictly stochas-

tically stable for all possible influenced sets S(t), t ∈ N and adversarial capability, k ≤ n. The

following theorem provides sufficient conditions that ensure G is universally resilient. For sets

S, T ⊆ N , define

d(S, T ) := |{{i, j} ∈ E : i ∈ S, j ∈ T}|.

Theorem 5. Let G = (N,E), and suppose an adversary influences some set S(t) with |S(t)| = k

at each t ∈ N. If

α >
|T | − d(T,N \ T )

d(T,N)
, ∀T ⊆ N (4.5)

Then ~x is strictly stochastically stable. In particular, if |S(t)| = N for all t ∈ N, (4.5) is also a

necessary condition for strict stochastic stability of ~x.

The proof of Theorem 5 follows by using a straightforward adaptation of Proposition 2 in [66]

to our adversarial model, included in Appendix B.3.2

When α satisfies (4.5), an adversary cannot influence the game for any S(t). If ~x is strictly

stochastically stable when the adversary influences set S(t) = N for all t ∈ N, then ~x will be strictly
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stochastically stable for any sequence of influenced sets, S(t) ⊆ N. In this case, game G is resilient

in the presence of any adversary with capability k ≤ n.3

When (4.5) is satisfied for some T ⊆ N , this means that agents in T have a sufficiently large

proportion of neighbors in N . In this case, T can only be influenced by an adversary when the

payoff gain, α, is small.

4.3.2 Fixed, intelligent adversarial influence

In the fixed, intelligent model of behavior, the adversary knows graph structure, G, and the

value of payoff gain, α. Using this information it influences some fixed subset,

S(t) = S ⊆ N, |S| = k, ∀t ∈ N,

aiming to maximize the number of agents playing y in a stochastically stable state. Agents in N

update their actions according to log-linear learning as in (4.2) with utilities

Ũi(a(t), S(t)) = Ũi(a(t), S), ∀t ∈ N.

We begin with two theorems which provide conditions for stochastic stability in an arbitrary

graph G influenced by an adversary, and then we analyze stability conditions in detail for the line.

Theorem 6. Suppose agents in N are influenced by a fixed, intelligent adversary with capability

k. Joint action ~x is strictly stochastically stable for any influenced set S with |S| = k if and only

if

α >
|T ∩ S| − d(T,N \ T )

d(T,N)
, (4.6)

∀T ⊆ N, T 6= ∅ and ∀S ⊆ N with |S| = k.

Theorem 7 provides conditions which ensure an adversary can stabilize joint action ~y.

3 Our results can naturally be extended to a multi-agent scenario. The primary differences occur when multiple
adversaries can influence a single friendly agent (or, equivalently, when an adversary’s influence is weighted by some
factor greater than 1). In this scenario, multiple adversaries can more easily overpower the influence of friendly agents
on agent i. We will address this in future work.
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Theorem 7. A fixed, intelligent adversary with capability k can stabilize ~y by influencing set S ⊆ N

with |S| = k if and only if

α <
d(T,N \ T ) + k − |T ∩ S|

d(N \ T,N \ T )
(4.7)

for all T ⊆ N , T 6= N .

The proofs of Theorems 6 and 7 follow similarly to the proof of Theorem 5 and are omitted

for brevity.

The line: We now analyze a fixed, intelligent adversary’s influence on the line. Let G = (N,E)

with N = {1, 2, . . . , n} and E = {{i, j} : j = i+ 1}, i.e., G is a line with n nodes. Define

[t] := {1, 2, . . . , t} ⊆ N, and [i, j] := {i, i+ 1, . . . , j} ⊆ N.

Theorem 8 summarizes stability conditions for the line influenced by a fixed, intelligent

adversary.

Theorem 8. Suppose G is influenced by a fixed, intelligent adversary with capability k. Then:

(1) Joint action ~x is strictly stochastically stable under any influenced set S ⊆ N with |S| = k

if and only if

α > max

{
k − 1

k
,

k

n− 1

}
. (4.8)

(2) If α < k
n−1 and the adversary distributes influenced set S as evenly as possible along the

line, so that

|S ∩ [i, i+ t]| ≤
⌈
kt

n

⌉
for any set of nodes [i, i+ t] ⊆ N , with 1 ≤ i ≤ n− t, t ≤ n then ~y is strictly stochastically

stable.

(3) Joint action ~y is strictly stochastically stable for all influenced sets S with |S| = k if and

only if

α <
1 + k − t
n− t− 1

, ∀t = 1, . . . , k. (4.9)
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(4) If k
n−1 < α < k−1

k , the adversary can influence at most

tmax = max

{
t : α <

min{t, k} − 1

t

}
agents to play ~y in the stochastically stable state by distributing S as evenly as possible

along [t], so that

|S ∩ [i, i+ `]| ≤
⌈
k`

t

⌉
and S ∩ [t+ 1, n] = ∅

for any set of nodes [i, i+ `] ⊂ N with 1 ≤ i ≤ t− `, and ` < t.

The proof of Theorem 8 is in Appendix B.3.2.

4.3.3 Mobile, random adversarial influence

Now, consider an adversary which influences a randomly chosen set S(t) ⊆ N at each t ∈ N.

The adversary chooses each influenced set, S(t), independently according to a uniform distribution

over Sk := {S ∈ 2N : |S| = k} An updating agent i ∈ N revises according to (4.2), where i ∈ S(t)

with probability k / n.

The line: Suppose a mobile, random adversary attempts to influence a set of agents arranged in

a line. Theorem 8 addresses the scenario where k = n, since in this case random and fixed agents

are equivalent. Hence, Theorem 9 focuses on the case where 1 ≤ k ≤ n− 1.

Theorem 9. Suppose G = (N,E) is a line, and agents in N update their actions according to log-

linear learning in the presence of a random, mobile adversary with capability k, where 1 ≤ k ≤ n−1.

Then joint action ~x is strictly stochastically stable if and only if α > 1, and joint action ~y is strictly

stochastically stable if and only if α < 1.

Theorem 9 is proved in Appendix B.3.3.

Note that a mobile, random adversary with capability k = 1 stabilizes ~y for the same values

of α as a mobile, random adversary with any capability k ≤ n − 1. Recall that a fixed, intelligent

adversary with capability k could only stabilize ~y when α < k /(n − 1). In this sense, a mobile,

random adversary with capability k = 1 has wider influence than a fixed, intelligent adversary with

capability k ≤ n− 2.
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4.3.4 Mobile, intelligent adversarial influence

Now suppose the adversary chooses S(t) at each t ∈ N based on joint action, a(t). We assume

a mobile, intelligent adversary with capability k chooses S(t) according to a policy µ : A → Sk that

maximizes the number of agents playing y in a stochastically stable state, given graph structure,

G, and payoff gain α. Again, agents in N update their actions according to log-linear learning as

in (4.2), with agent i’s utility at time t ∈ N given by Ũi(a(t), µ(a(t)). We denote the set of optimal

adversarial policies for a given capability k by

Mk = arg max
µ∈Mk

max
a stable under µ

|{i ∈ N : ai = y}| (4.10)

where Mk represents the set of all mappings µ : A → Sk, and “a stable under µ” denotes that joint

action a ∈ A is strictly stochastically stable under µ. 4

The line: Theorem 10 establishes conditions for strict stochastic stability of joint actions ~x and ~y

in the line influenced by a mobile, intelligent adversary.

Theorem 10. Suppose G = (N,E) is a line, and agents in N update their actions according to

log-linear learning. Further suppose a mobile intelligent adversary influences set S(t) at each t ∈ N

according to an optimal policy for the line, µ? ∈Mk.

(1) If the adversary has capability k = 1 then ~x is strictly stochastically stable if and only if

α > 1, and ~y is strictly stochastically stable if and only if α < 1.

In particular, when k = 1, the policy µ? : A → S1 with:

µ?(a) =



{1} if a = ~x

{t+ 1} if a = (~y[t], ~x[t+1,n]),

t ∈ {1, 2, . . . , n− 1}

{1} otherwise

(4.11)

is optimal, i.e., µ? ∈M1

4 Note that the optimal set of policies, Mk, depends highly on the structure of graph G, as does the stationary
distribution πµ. In order to maintain notational simplicity, we do not explicitly write this dependence.
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(2) If 2 ≤ k ≤ n, then ~x is strictly stochastically stable if and only if α > n/(n− 1), and ~y is

strictly stochastically stable if and only if α < n/(n− 1).

If 2 ≤ k ≤ n− 1, any policy µ? : A → Sk satisfying:

(a) 1 ∈ µ?(~x)

(b) 1, n ∈ µ?(~y)

(c) For any a ∈ A, a 6= ~x, ~y, there exists i ∈ µ?(a) such that ai = x and either ai−1 = y

or ai+1 = y

is optimal.

The proof of Theorem 10 is included in Appendix B.3.4. Recall that a mobile, random agent

with k ≥ 1 and a fixed, intelligent agent with k = n−1 can stabilize ~y any time α < 1; an adversary

who can intelligently influence a different single agent in N each day can stabilize ~y under these

same conditions. If the intelligent, mobile adversary has capability k ≥ 2, it can stabilize ~y when

α < n/(n− 1), i.e., under the same conditions as an adversary with capability k = n.

We have shown that a mobile, intelligent adversary with capability k ≥ 2 can stabilize joint

action ~y in a line for any α < n/(n− 1). Next, an intelligent, mobile adversary with capability

k = 1 and a random, mobile adversary with capability k ≤ n − 1 can stabilize ~y when α < 1.

Finally, a fixed, intelligent adversary with capability k can stabilize ~y when α < k /(n− 1). Recall

that a fixed, intelligent adversary can also stabilize a joint action where some subset of agents play

action y; this only occurs when α < (min{t, k} − 1) / t < 1 for some t ≤ n.

In future work, we will address the scenario where multiple adversaries aim to influence agents

in N .By heavily influencing a single agent, adversaries can cause this agent to choose action y with

near certainty. Due to cascading effects, this can allow adversaries to stabilize joint action ~y for

significantly larger values of payoff gain, α.
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Chapter 5

Conclusion and Future Directions

In summary, we have presented the following three main contributions to the field of dis-

tributed control system research:

Research question #1: When is fast convergence to near-optimal collective behavior possible in a

distributed system?

Contribution: Fast convergence to near-optimal collective behavior is possible when agents revise

their actions according a a mild variant of log-linear learning, provided (1) agents’ utilities are their

marginal contribution to the system level objective, and (2) heterogeneity among agents is limited.

Research question #2: Can agents in a distributed system learn near-optimal correlated behavior

despite severely limited information about one another’s behavior?

Contribution: Following the algorithm in Chapter 3, agents with limited knowledge of each other’s

behavior can learn a utility-maximizing correlated equilibrium.

Research question #3: How does the structure of agent interaction impact a distributed system’s

vulnerability to adversarial manipulation?

Contribution: If every subset of agent interacts with sufficiently many other agents, the system is

more resilient to adversarial manipulation.

5.1 Future Directions

There are many remaining open questions in characterizing tradeoffs between information,

performance, speed, and vulnerability in distributed control systems. Among the many interesting
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research questions are:

• When fast convergence to a near-optimal solution is impossible, can we design algorithms

whose short and medium term performance is guaranteed to be within an acceptable factor

of optimal?

• In distributed control systems, can limited centralized intervention improve performance

and speed?

• If, instead of the adversarial model presented in Chapter 4, adversaries are able to sever or

hijack communication links, how can this impact performance and speed in a distributed

system?

• Can we further characterize the relationship between inter-agent communication structure,

performance, and speed?

• Can small amounts of lost or ignored information between agents significantly degrade

global performance?
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Appendix A

Technical Preliminaries

A.1 Markov chain preliminaries

A continuous time Markov chain, {Zt}t≥0, over a finite state space Ω may be written in terms

of a corresponding discrete time chain with transition matrix M [50], where the distribution µ(t)

over Ω evolves as:

µ(t) = µ(0)et(M−I) = µ(0)e−t
∞∑
k=0

tkMk

k!
, t ≥ 0 (A.1)

where we refer to M as the kernel of the process Zt and µ(0) ∈ ∆(Ω) is the initial distribution.

The following definitions and theorems are taken from [50, 57]. Let µ, ν be measures on the finite

state space Ω. Total variation distance is defined as

‖µ− ν‖TV :=
1

2

∑
x∈Ω

|µx − νx|. (A.2)

and

D(µ : ν) :=
∑
x∈Ω

µx log
µx
νx

(A.3)

is defined to be the relative entropy between µ and ν. The total variation distance between two

distributions can be bounded using the relative entropy:

‖µ− ν‖TV ≤
√
D(µ : ν)

2
(A.4)

For a continuous time Markov chain with kernel M and stationary distribution π, the distribution

µ(t) obeys

D(µ(t) : π) ≤ e−4tρ(M)D(µ(0) : π), t ≥ 0 (A.5)
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where ρ(M) is the Sobolev constant of M , defined by

ρ(M) := inf
f :Ω→R :
L(f)6=0

E(f, f)

L(f)
(A.6)

with

E(f, f) :=
1

2

∑
x,y∈Ω

(f(x)− f(y))2M(x, y)πx (A.7)

L(f) := Eπ log
f2

Eπf2
. (A.8)

Here Eπ denotes the expectation with respect to stationary distribution π. For a Markov chain

with initial distribution µ(0) and stationary distribution π, the total variation and relative entropy

mixing times are

TTV (ε) := min
t
{‖µ(t)− π‖ ≤ ε} (A.9)

TD(ε) := min
t
{D(µ(t) : π) ≤ ε} (A.10)

respectively. From [50], Corollary 2.6 and Remark 2.11,

TD(ε) ≤ 1

4ρ(M)

(
log log

1

πmin
+ log

1

ε

)
,

where πmin := minx∈Ω πx. Applying (A.4),

TTV (ε) ≤ TD(2ε2)

≤ 1

4ρ(M)

(
log log

1

πmin
+ 2 log

1

ε

)
. (A.11)

Hence, a lower bound on the Sobolev constant yields an upper bound on the mixing time for the

Markov chain.

A.2 Resistance Trees

Define P 0 as the transition matrix for some nominal Markov process, and let P ε be a per-

turbed version of this nominal process where the size of the perturbation is ε > 0. Throughout this

paper, we focus on the following class of Markov chains.
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Definition 11. A family of Markov chains defined over a finite state space X, whose transition

matrices are denoted by {P ε}ε>0, is called a regular perturbed process of a nominal process

P 0 if the following conditions are satisfied for all x, x′ ∈ X:

(1) There exists a constant c > 0 such that P ε is aperiodic and irreducible for all ε ∈ (0, c].

(2) limε→0 P
ε
x→x′ = P 0

x→x′ .

(3) If P εx→x′ > 0 for some ε > 0, then there exists a constant r(x→ x′) ≥ 0 such that

0 < lim
ε→0

P εx→x′

εr(x→x′)
<∞. (A.12)

The constant r(x→ x′) is referred to as the resistance of the transition x→ x′.

For any ε > 0, let µε = {µεx}x∈X ∈ ∆(X) denote the unique stationary distribution associated

with P ε. The theory of resistance trees presented in [64] provides efficient mechanisms for computing

the support of the limiting stationary distribution, i.e., limε→0+ µ
ε, commonly referred to as the

stochastically stable states.

Definition 12. A state x ∈ X is stochastically stable [17] if limε→0+ µ
ε
x > 0, where µε is the

stationary distribution corresponding to P ε.

In this paper, we adopt the technique provided in [64] for identifying the stochastically stable

states through a graph theoretic analysis over the recurrent classes of the unperturbed process P 0.

To that end, let Y0, Y1, . . . , Ym denote the recurrent classes of P 0. Define Pij to be the set of all

paths connecting Yi to Yj , i.e., a path p ∈ Pij is of the form p = {(x1, x2), (x2, x3), . . . , (xk−1, xk)}

where x1 ∈ Yi and xk ∈ Yj . The resistance associated with transitioning from Yi to Yj is defined as

r(Yi, Yj) = min
p∈Pij

∑
(x,x′)∈p

r(x, x′). (A.13)

The recurrent classes Y0, Y1, . . . , Ym satisfy the following properties: (i) there is a zero resis-

tance path, i.e., a sequence of transitions each with zero resistance, from any state x ∈ X to at least

one state y in one of the recurrent classes; (ii) for any recurrent class Yi and any states yi, y
′
i ∈ Yi,
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there is a zero resistance path from yi to y′i; and (iii) for any state yi ∈ Yi and yj ∈ Yj , Yi 6= Yj ,

any path from yi to yj has strictly positive resistance.

The first step in identifying the stochastically stable states is to identify the resistance between

the various recurrent classes. The second step focuses on analyzing spanning trees of the weighted,

directed graph G whose vertices are recurrent classes of the process P 0, and whose edge weights

are given by the resistances between classes in (A.13). Denote Ti to be the set of all spanning trees

of G rooted at recurrent class Yi. Next, we compute the stochastic potential of each recurrent class

which is defined as follows:

Definition 13. The stochastic potential of recurrent class Yi is

γ(Yi) = min
T ∈Ti

∑
(Y,Y ′)∈T

r(Y, Y ′)

The following theorem characterizes the recurrent classes that are stochastically stable.

Theorem 11 ( [64]). Let P 0 be the transition matrix for a stationary Markov process over the

finite state space X with recurrent communication classes Y1, . . . , Ym. For each ε > 0, let P ε be a

regular perturbation of P 0 with a unique stationary distribution µε. Then:

(1) As ε→ 0, µε converges to a stationary distribution µ0 of P 0.

(2) A state x ∈ X is stochastically stable if and only if x is contained in a recurrent class Yj

that minimizes γ(Yj).
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Appendix B

Proofs

B.1 Fast Convergence in Semi-Anonymous Potential Games: Background

and Proofs

We begin with a problem formulation and notation summary for semi-anonymous potential

games, and then proceed with a proof of Theorem 1. Next, we provide a problem formulation and

summary for time-varying semi-anonymous potential games, followed by a proof of Theorem 4.

B.1.1 Semi-Anonymous Potential Games

The following Markov chain, M , over state space X is the kernel of the continuous time

modified log-linear learning process for stationary semi anonymous potential games. Define nj :=

|Nj | to be the size of population j, define sj := |Āj |, and let σ :=
∑m

j=1 sj . Let ekj ∈ Rsj be the kth

standard basis vector of length sj for k ∈ {1, . . . , sj}. Finally, let

x = (xj ,x−j) = (x1, x2, . . . , xm) ∈ X,

where xj = (x1
j , x

2
j , . . . , x

sj
j ) represents the proportion of players choosing each action within pop-

ulation j’s action set. The state transitions according to:

• Choose a population Nj ∈ {N1, N2, . . . , Nm} with probability sj/σ.

• Choose an action ākj ∈ {ā1
j , ā

2
j , . . . , ā

sj
j } = Āj with probability 1/sj .

• If xkj > 0, i.e., at least one player from population j is playing action ākj , choose p ∈ {p′ ∈

Nj : āp′ = ākj } uniformly at random to update according to (2.7). That is, transition to
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xj + 1

n(e`j − ekj ), x−j
)

with probability

eβφ(xj+
1
n

(e`j−ekj ),x−j)∑sj
t=1 e

βφ(xj+
1
n

(e`j−ekj ),x−j)

for each ` ∈ {1, 2, . . . , sj}. 1

This defines transition probabilities in M for transitions from state x = (xj , x−j) ∈ X to a

state of the form y =
(
xj + 1

n(e`j − ekj ), x−j
)
∈ X in which a player from population Nj updates

his action, so that

M(x, y) =
eβφ(xj+

1
n

(e`j−ekj ),x−j)

σ
∑sj

t=1 e
βφ(xj+

1
n

(etj−ekj ),x−j)
(B.1)

For a transition of any other form, M(x, y) = 0. Applying (A.1) to the chain with kernel M and

global clock rate ασn, modified log-linear learning evolves as

µ(t) = µ(0)eασnt(M−I). (B.2)

Notation summary for stationary semi-anonymous potential games: LetG = {N, {Ai}, {Ui}}

be a stationary semi-anonymous potential game. The following summarizes the notation corre-

sponding to game G.

• X - aggregate state space corresponding to the game G

• φ : X → R - the potential function corresponding to game G

• M - probability transition kernel for the modified log-linear learning process

• α - design parameter for modified log-linear learning which may be used to adjust the global

update rate

1 Agents’ update rates are the only difference between our algorithm, standard log-linear learning, and the log-
linear learning variant of [57]. In standard log-linear learning, players have uniform, constant clock rates. In our
variant and the variant of [57], agents’ update rates vary with the state. For the algorithm in [57], agent i’s update
rate is αn/ z̃i(t), where z̃i(t) is the total number of players selecting the same action as agent i. The discrete time
kernel of this process is as follows [57]: (1) Select an action ai ∈ ∪i∈NAi uniformly at random. (2) Select a player
who is currently playing action ai uniformly at random. This player updates its action according to (2.7). The two
algorithms differ when at least two populations have overlapping action sets.
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• µ(t) = µ(0)eαnt(M−I) - distribution over state space X at time t when beginning with

distribution µ(0) and following the modified log-linear learning process

• Nj - the jth population

• nj := |Nj | - the size of the jth population

• Āj - action set for agents belonging to population Nj

• ākj - the kth action in population Nj ’s action set

• s := | ∪mj=1 Aj | - size of the union of all populations’ action sets

• sj := |Āj | - size of population Nj ’s action set

• ekj ∈ Rsj - kth standard basis vector of length sj

• σ :=
∑m

j=1 sj - sum of sizes of each population’s action set

• π - stationary distribution corresponding to the modified log-linear learning process for

game G.

• (xj , x−j) = (x1, x2, . . . , xm) ∈ X, a state in the aggregate state space, where xj = (x1
j , x

2
j , . . . , x

sj
j ).

B.1.2 Proof of Theorem 1

We require two supporting lemmas to prove Theorem ??. The first establishes the stationary

distribution for modified log-linear learning as a function of β and characterizes how large β must

be so the expected value of the potential function is within ε/2 of maximum. The second upper

bounds the mixing time to within ε/2 of the stationary distribution for the modified log-linear

learning process.

Lemma 1. For the stationary semi-anonymous potential game G = (N,Ai, Ui) with state space X

and potential function φ : X → [0, 1], the stationary distribution for modified log-linear learning is

πx ∝ eβφ(x), x ∈ X (B.3)
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Moreover, if condition (i) of Theorem ?? is satisfied and β is sufficiently large as in (1.10), then

Eπ[φ(x)] ≥ max
x∈X

φ(x)− ε/2. (B.4)

Proof: The form of the stationary distribution follows from standard reversibility arguments, using

(B.1) and (B.3).

For the second part of the proof, define the following:

Cβ :=
∑
x∈X

eβφ(x),

x? := arg max
x∈X

φ(x)

B(x?, δ) := {x ∈ X : ‖x− x?‖1 ≤ δ}

where δ ∈ [0, 1] is a constant which we will specify later. Because π is of exponential form with

normalization factor Cβ, the derivative of logCβ with respect to β is Eπ[φ(x)]. Moreover, it follows

from (B.3) that Eπ[φ(x)] is monotonically increasing in β, so we may proceed as follows:

Eπ[φ(x)] ≥ 1

β
(logCβ − logC0)

= φ(x?) +
1

β
log

∑
x∈X e

β(φ(x)−φ(x?))

|X|
(a)

≥ φ(x?) +
1

β
log

∑
x∈B(x?,δ) e

−βδλ

|X|

= φ(x?) +
1

β
log
|B(x?, δ)|e−βδλ

|X|

= φ(x?)− δλ+
1

β
log

( |B(x?, δ)|
|X|

)
where (a) is from the fact that φ is λ-Lipschitz and the definition of B(x?, δ). Using intermediate

results in the proof of Lemma 6 of [57], |B(x?, δ)| and |X| are bounded as:

|B(x?, δ)| ≥
m∏
i=1

(
δ(ni + 1)

2msi

)si−1

, and (B.5)

|X| ≤
m∏
i=1

(ni + 1)si−1. (B.6)

Now,

Eπ[φ(x)] ≥ φ(x?)− δλ+
1

β
log

( |B(x?, δ)|
|X|

)
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≥ φ(x?)− δλ+
1

β
log


∏m
i=1

(
δ(ni+1)

2msi

)si−1∏m
i=1(ni + 1)si−1


= φ(x?)− δλ+

1

β
log

m∏
i=1

(
δ

2msi

)si−1

≥ φ(x?)− δλ+
m(s− 1)

β
log

(
δ

2ms

)
Consider two cases: (i) λ ≤ ε/4, and (ii) λ > ε/4. For case (i), choose δ = 1 and let β ≥
4m(s−1)

ε log 2ms. Then,

Eπ[φ(x)] ≥ φ(x?)− δλ+
m(s− 1)

β
log

(
δ

2ms

)
≥ φ(x?)− ε/4− m(s− 1)

β
log 2ms

≥ φ(x?)− ε/4− εm(s− 1)

4m(s− 1) log 2ms
log 2ms

= φ(x?)− ε/2

For case (ii), note that λ > ε/4 =⇒ δ = ε/4λ < 1 so we may choose δ = ε/4λ. Let

β ≥ 4m(s−1)
ε log

(
8λms
ε

)
. Then

Eπ[φ(x)] ≥ φ(x?)− δλ+
m(s− 1)

β
log

(
δ

2ms

)
= φ(x?)− ε/4 +

m(s− 1)

β
log
( ε

8λms

)
= φ(x?)− ε/4− m(s− 1)

β
log

(
8λms

ε

)
≥ φ(x?)− ε/4− εm(s− 1)

4m(s− 1) log
(
8λms
ε

) log

(
8λms

ε

)
= φ(x?)− ε/2

as desired.

Lemma 2. For the Markov chain defined by modified log-linear learning with kernel M and sta-

tionary distribution π, if the number of players within each population satisfies condition (ii) of

Theorem 1, and t is sufficiently large as in (1.12), then

‖µ(t)− π‖TV ≤ ε/2. (B.7)
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Proof: We begin by establishing a lower bound on the Sobolev constant for the Markov chain,

M . We claim that, for the Markov chain M defined in Appendix B.1.1, if φ : X → [0, 1] and

m+
∑m

i=1 n
2
i ≥ σ, then

ρ(M) ≥ e−3β

c1m(m(s− 1))!2n2
(B.8)

for some constant c1 which depends only on s. Then, from (A.11), a lower bound on the Sobolev

constant yields an upper bound on the mixing time for the chain M .

Using the technique of [57], we compare the Sobolev constants for the chain M and a similar

random walk on a convex set. The primary difference is that our proof accounts for dependencies

on the number of populations, m, whereas theirs considers only the m = 1 case. As a result, our

state space is necessarily larger. We accomplish this proof in four steps. In step 1, we define M?

to be the Markov chain M with β = 0, and establish the bound ρ(M) ≥ e−3βρ(M?). In step 2, we

define a third Markov chain, M †, and establish the bound ρ(M?) ≥ 1
sρ(M †). Then, in step 3, we

establish a lower bound on the Sobolev constant of M †. Finally, in step 4, we combine the results

of the first three steps to establish (B.8). We now prove each step in detail.

Step 1, M to M?: Let M? be the Markov chain M with β = 0, and let π? be its stationary

distribution. In M? an updating agent chooses his next action uniformly at random. Per Equation

(B.3) with β = 0, the stationary distribution π? of M? is the uniform distribution. Let x, y ∈ X.

We bound πx/π
?
x and M(x, y)/M?(x, y) in order to use Corollary 3.15 in [50]:

πx
π?x

=
eβφ(x)∑
y∈X e

βφ(y)
·
∑

y∈X e
0

e0
=
|X|eβφ(x)∑
y∈X e

βφ(y)

Since φ(x) ∈ [0, 1] for all x ∈ X, this implies

e−β ≤ πx
π?x
≤ eβ (B.9)

Similarly, for y = (xj + 1
n(ekj − e`j), x−j),

M(x, y)

M?(x, y)
=

sje
βφ(y)∑sj

r=1 e
βφ(xj+

1
n

(eki−eri ),x−j)

Since φ(x) ∈ [0, 1] for all x ∈ X, for any x, y ∈ X of the above form,

e−β ≤ M(x, y)

M?(x, y)
≤ eβ. (B.10)
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For a transition to any y not of the form above, M(x, y) = M?(x, y) = 0. Using this fact and

Equations (B.9) and (B.10), we apply Corollary 3.15 in [50]:

ρ(M) ≥ e−3βρ(M?). (B.11)

Step 2, M? to M †: Consider the Markov chain M † on X, where transitions from state x to y

occur as follows:

• Choose a population Nj with probability sj/σ

• Choose k ∈ {1, . . . , sj − 1} and choose κ ∈ {−1, 1}, each uniformly at random.

∗ If κ = −1 and xkj > 0, then y = (xj + 1
n(e

sj
j − ekj ), x−k).

∗ If κ = 1 and x
sj
j > 0, then y = (xj + 1

n(ekj − e
sj
j ), x−j).

Since M †(x, y) = M †(y, x) for any x, y ∈ X, M † is reversible with the uniform distribution over X.

Hence the stationary distribution is uniform, and π† = π?.

For a transition x to y in which an agent from population Nj changes his action, M?(x, y) ≥
1
sj
M †(x, y), implying

M?(x, y) ≥ 1

s
M †(x, y), ∀x, y ∈ X (B.12)

since s ≥ sj , ∀i ∈ {1, . . . ,m}. Using (B.12) and the fact that π? = π†, we apply Corollary 3.15

from [50]:

ρ(M?) ≥ 1

s
ρ(M †) (B.13)

Step 3, M † to a random walk: The following random walk on

C =

{
(z1, . . . , zm) ∈ Zσ−m+ : zj ∈ Zsj−1+ ,

sj−1∑
k=1

zkj ≤ nj , ∀j
}

is equivalent to M †. Transition from x→ y in C as follows:

• Choose j ∈ [σ −m] and κ ∈ {−1, 1}, each uniformly at random

• y =

 x+ κej if x+ κej ∈ C

x otherwise

.
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The stationary distribution of this random walk is uniform. We lower bound the Sobolev

constant, ρ(M †), which, using the above steps, lower bounds ρ(M) and hence upper bounds the

mixing time of our algorithm.

Let g : C → R be an arbitrary function. To lower bound ρ(M †), we will lower bound E(g, g)

and upper bound L(g). The ratio of these two bounds in turn lower bounds the ratio E(g, g)/L(g);

since g was chosen arbitrarily this also lower bounds the Sobolev constant. We will use a theorem

due to [21] which applies to an extension of a function g : C → R to a function defined over the

convex hull of C; here we define this extension.

Let K be the convex hull of C. Given g : C → R, we follow the procedure of [21, 57] to

extend g to a function gε : K → R. For x ∈ C, let C(x) and C(x, ε) be the σ −m dimensional

cubes of center x and sides 1 and 1 − 2ε respectively. For sufficiently small ε > 0 and z ∈ C(x),

define gε : K → R by:

gε(z) :=

 g(x) if z ∈ C(x, ε)

(1+η(z))g(x)+(1−η(z))g(y)
2 otherwise

where y ∈ C is a point such that D := C(x) ∩ C(y) is the closest face of C(x) to z (if more than

one y satisfy this condition, one such point may be chosen arbitrarily), and η := dist(z,D)
ε ∈ [0, 1).

The dist function represents standard Euclidean distance in Rσ−m.

Define

Iε :=

∫
K

∣∣∇gε(z)∣∣2dz (B.14)

Jε :=

∫
K

gε(z)
2 log

gε(z)
2 vol(K)∫

K
gε(y)2dy

dz. (B.15)

Applying Theorem 2 of [21] for K ∈ Rσ−m with diameter
√∑m

i=1 n
2
i , if m+

∑m
i=1 n

2
i ≥ σ,

εIε
Jε
≥ 1

A
∑m

i=1 n
2
i

. (B.16)

We lower bound E(g, g) in terms of εIε and then upper bound L(g) in terms of Jε to obtain a

lower bound on their ratio with Equation (B.16). The desired lower bound on the Sobolev constant

follows.
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Using similar techniques to [57], we lower bound E(g, g) in terms of εIε as

Iε ≤
|C|(σ −m)

ε
E(g, g) +O(1).

Then, εIε ≤ε→0 |C|(σ −m)E(g, g), and hence

E(g, g) ≥
ε→0

εIε
|C|(σ −m)

. (B.17)

Again, using similar techniques as [57], we bound Jε as

Jε
vol(K)

≥ |C|
22(σ−m) vol(K)(σ −m)!2

L(f).

Then

L(g) ≤
ε→0

22(σ−m)(σ −m)!2

|C| Jε. (B.18)

Step 4, Combining inequalities: Using inequalities (B.16), (B.17), and (B.18),

E(f, f)

L(f)
≥ 1

22(σ−m)A(σ −m)(σ −m)!2
∑m
i=1 n

2
i

, (B.19)

∀f : C → R. Therefore,

ρ(M†) = min
f :C→R

E(f, f)

L(f)

≥ 1

22(σ−m)A(σ −m)(σ −m)!2
∑m
i=1 n

2
i

(B.20)

Combining equations (B.11), (B.13), and (B.20)

ρ(M) ≥ e−3β

22msc1m2(m(s− 1))!2n2

where c1 is a constant depending only on s.

From here, Lemma 2 follows by applying Equation (A.11) in a similar manner as the proof

of Equation (23) in [57]. The main difference is that the size of the state space is bounded as

|X| ≤∏m
i=1(ni + 1)si+1 due to the potential for multiple populations.

Combining Lemmas 1 and 2 results in a bound on the time it takes for the expected potential

to be within ε of the maximum, provided β is sufficiently large. The lemmas and method of proof

for Theorem 1 follow the structure of the supporting lemmas and proof for Theorem 3 in [57]. The

main differences have arisen due to the facts that i) our analysis considers the multi-population
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case, so the size of our state space cannot be reduced as significantly as in the single population

case of [57], and ii) update rates in our algorithm depend on behavior within each agent’s own

population, instead of on global behavior.

Proof of Theorem 1:

From Lemma 1, if condition (i) of Theorem 1 is satisfied and β is sufficiently large as in (1.10),

then Eπ[φ(x)] ≥ maxx∈X φ(x)− ε/2. From Lemma 2, if condition (ii) of Theorem 1 is satisfied, and

t is sufficiently large as in (1.12), then ‖µ(t)− π‖TV ≤ ε/2. Then

E[φ(a(t)|X)] = Eµ(t)[φ(x)]

≥ Eπ[φ(x)]− ‖µ(t)− π‖TV ·max
x∈X

φ(x)

(a)

≥ max
x∈X

φ(x)− ε

where (a) follows from (B.4), (B.7), and the fact that φ(x) ∈ [0, 1].

B.1.3 Time-Varying Semi-Anonymous Potential Games

To analyze the dynamics associated with modified log-linear learning, we must analyze the

behavior of the time-varying Markov chain, Mt, which corresponds to the time varying game

Gt = (N t, {Ati}, {U ti }} for any t ∈ R+. Let n(t) := |N t| and ntj := |N t
j |. The stationary distribution

corresponding to Mt will be denoted by π(t). Here, the state space varies with time; denote the

aggregate state space corresponding to Gt by Xt, and define X := ∪t∈R+Xt.

A few additional definitions and notation will be useful in proving Theorem 4. We begin

by identifying the times at which changes in the state space Xt may occur, i.e., a player becomes

active or inactive. As in [57], consider the sequence of times t0 < t1 < · · · where Ni(t) = Ni(t
′) for

all t, t′ ∈ [t`, t`+1), i ∈ {1, 2, . . . ,m} and

Λ ≤ |t`+1 − t`| ≤ 2Λ (B.21)

for all ` = 0, 1, 2, . . . . The times in this sequence represent times at which a player may either

become active or inactive, with additional times (when no change occurs) inserted if necessary to
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satisfy the upper bound of (B.21). For each t`, there are three cases:

(i) A player joins population Nj at action āij .

(ii) A player exits population Nj from action āij .

(iii) No change.

For cases (i) and (ii), the state space Xt changes when a player enters or exits a population. To

assess the way this changes the distance between distributions π(t) and µ(t), we project distributions

from the old to the new state space using the projection operator,

·|Xt : Xt− → Xt+ ,

which is identical to the operator in [57]. Here Xt− is the state space immediately before the

change, and Xt+ is the state space immediately after.

Let eij ∈ Rsj be the ith standard basis vector of length sj for i ∈ {1, 2, . . . , si}, let n = n(t−) be

the number of players at time t before the change occurs, and let x = (xj , x−j) = (x1, x2, . . . , xm) ∈

Xt− .

Case (i): A player joins population Nj at action āij .

x|Xt =

(
n(t−)xj + eij
n(t−) + 1

,
n(t−)x−j
n(t−) + 1

)
(B.22)

Case (ii): A player exits population Nj from action āij .

x|Xt =

(
n(t−)xj + eij
n(t−)− 1

,
n(t−)x−j
n(t−)− 1

)
(B.23)

Case (iii): No change.

x|Xt = x. (B.24)

We project a distribution µ(t−) ∈ ∆Xt− to a distribution µ(t) ∈ ∆Xt by assigning the mass

of state x ∈ Xt− in µ(t−) to state x|Xt in the projected distribution, i.e.,

µx|Xt (t) = µx(t−), ∀x ∈ Xt− , (B.25)



www.manaraa.com

89

and µx(t) = 0 if there is no state in Xt− which projects to x ∈ Xt. Here, µ(t) is the distribu-

tion immediately after the change, µ(t−) is the distribution immediately prior, and µx(t) denotes

the mass on state x in the distribution µ(t). Using (B.25), we extend the projection operator to

distributions as

µ(t) = µ(t−)|Xt . (B.26)

For notational simplicity, define

π̂(t`) := π(t`)|t`+1
(B.27)

as in [57]. Note that, in general, π̂(t`) 6= π(t`+1), i.e., the projected stationary distribution is not

the stationary distribution of the new Markov chain.

Notation summary for time-varying semi-anonymous potential games: Let G = {Gt}t∈R+ ,

where Gt is a semi-anonymous potential game for all t ∈ R+. The following summarizes the notation

corresponding to the time-varying game G.

• Xt - aggregate state space corresponding to game Gt.

• X := ∪t∈R+Xt - union of aggregate state spaces corresponding to games Gt for all t ∈ R+.

• n(t) := |N t| - number of active players at time t

• nj(t) := |N t
j | - size of the jth population at time t

• π(t) - stationary distribution corresponding to the Markov chain Mt for t ∈ R+.

• Λ - bound on the length of time between possible changes in the state space, satisfies

Λ ≤ |t`+1 − t`| ≤ 2Λ, for all times t`, t`+1, at which changes in the state space may occur.

• ·|Xt : Xt− → Xt+ - projection operator which projects distributions from state space Xt−

to Xt+ , where t− denotes the time immediately prior to a possible change in the state

space, and t+ denotes the time immediately after.

• π̂(t`) := π(t`)|t`+1
- the stationary distribution corresponding to Mt` projected to Xt`+1
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B.1.4 Proof of Theorem 4

To prove Theorem 4, we analyze the limiting behavior of the time-varying Markov chain,

Mt, which governs the modified log-linear learning process. We use Lemma 1 from Appendix B.1.2

and Lemma 3 stated below. Lemma 3 is analogous to Lemma 2 for stationary semi-anonymous

potential games, and establishes conditions under which the distribution µ(t) is within ε / 2 of the

stationary distribution.

Lemma 3. For the trajectory of semi-anonymous potential games, G = {Gt}t≥R+, if Conditions

(i) - (iv) of Theorem 4 are met, then

‖µ(t)− π(t)‖TV ≤ ε / 2 (B.28)

for all t sufficiently large as in (2.13).

Proof:

To prove Lemma 3, we begin by bounding the change in entropy distance between µ(t) and π(t)

when a player becomes active or inactive. We claim that, if n(t`) satisfies (2.8), then

D (µ(t`+1) : π(t`+1)) ≤
(

1− A1

n(t`)

)
D (µ(t`) : π(t`)) +

A2

n(t`)

where

A1 :=
2e−3βΛ

c0
, A2 := 6βλ+ eβc(s− 1)

The majority of details needed to prove equation (??) follow closely to the proof of Lemma 7

in [57] and are omitted for brevity. However differences arise in establishing the fact that, for any

` > 0, if ni(t`) ≥ n(t`) / k for some k > 0, then

∑
x∈Xt`+1

µx(t`+1) log
π̂x(t`)

πx(t`+1)
≤ 6βλ+ eβk(sj − 1)

n(t`)
. (B.29)

The primary difference between this portion of the proof and the proof of Lemma 8 in [57] is

that we account for the fact that players may enter or exit any given population. There are three

cases:
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(i) No change in the number of players.

(ii) Player joins population Nj with action āij .

(iii) Player exits population Nj from action āij .

Case (i) is trivial, as π̂x(t`) = πx(t`+1) for all x ∈ X when there is no change in the number of

players, so the left hand side of (B.29) is zero. For Case (ii), let

n = n(t`+1) = n(t`) + 1 = n(t−`+1) + 1

and let

nj = nj(t`+1) = nj(t`) + 1 = nj(t
−
`+1) + 1.

We will use the following inequality:

∑
x∈Xt`+1

µx(t`+1) log
π̂x(t`)

πx(t`+1)
≤ max

x∈Xt`+1:xij>0
log

π̂x(t`)

πx(t`+1)
.

This is because, if the new player joins population j at action āij , then µx(t`+1) = 0 for any state

x with xij = 0. For x ∈ Xt`+1,

πx(t`+1) =
exp(βφ(x))

C1

π̂x(t`) =


exp

(
βφ

(
nx−eij
n−1

))
C2

if xij > 0

0 otherwise

where

C1 =
∑

x∈Xt`+1

exp(βφ(x))

C2 =
∑

x∈Xt`+1 :xij>0

exp

(
βφ

(
nx− eij
n− 1

))
.

Then,

∑
x∈Xt`+1

µx(t`+1) log
π̂x(t`)

πx(t`+1)
≤ max

x∈Xt`+1:xij>0
log

π̂x(t`)

πx(t`+1)
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= log
C1

C2
+ max
x∈Xt`+1:xij>0

β

(
φ

(
nx− eij
n− 1

)
− φ(x)

)

≤ log
C1

C2
+

2βλ

n− 1
. (B.30)

The last inequality follows from the λ-Lipschitz property of φ. We can bound the C1 /C2 in a

similar fashion as the proof of Lemma 8 in [57] to get

C1

C2
≤ 1 +

4βλ+ eβk(s− 1)

n− 1
. (B.31)

The primary difference is that we must make use of the fact that there exists a constant k > 0 such

that nj ≥ n/k for all j ∈ {1, 2 . . . ,m} to achieve this upper bound in terms of n.

Combining (B.30) and (B.31),

∑
x∈Xt`+1

µx(t`+1) log
π̂x(t`)

πx(t`+1)
≤ log

C1

C2
+

2βλ

n− 1

≤ log

(
1 +

4βλ+ eβk(s− 1)

n− 1

)
+

2βλ

n− 1

(a)

≤ 6βλ+ eβk(s− 1)

n− 1

=
6βλ+ eβk(s− 1)

n(t`)
(B.32)

(a) is from the fact that log(1 + x) ≤ x for x ≥ 0.

Case (iii) follows a similar argument as case (ii) to show that

∑
x∈Xt`+1

µx(t`+1) log
π̂x(t`)

πx(t`+1)
≤ 6βλ

n(t`+1)
.

The remainder of the proof of Lemma 3 in a similar fashion as intermediate steps in the proof

of Theorem 4 in [57]. The primary difference is that the size of the initial state space is instead

bounded as Xt0 ≤∏m
i=1(ni(t0) + 1)si−1.

Proof of Theorem 4:

Using Lemmas 1 and 3, the proof of Theorem 4 follows in exactly the same manner as the proof of

Theorem 1.
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B.2 Learning Efficient Correlated Equilibria: Background and Proofs

Here, we provide the proof for Theorem 2. The formulation of the decision making process

defined in Section 3.2 ensures that the evolution of the agents’ states over the periods {0, 1, 2, . . . }

can be represented as a finite ergodic Markov chain over the state space

X = X1 × · · · ×Xn (B.33)

where Xi = Si×{C,D} denotes the set of possible states of agent i. Let P ε denote this Markov chain

for some ε > 0, and δ = ε. Proving Theorem 2 requires characterizing the stationary distribution of

the family of Markov chains {P ε}ε>0 for all sufficiently small ε. We employ the theory of resistance

trees for regular perturbed processes, introduced in [64], to accomplish this task. We begin by

reviewing this theory and then proceed with the proof of Theorem 2.

We begin by restating the main results associated with Theorem 2 (setting δ = ε) using the

terminology defined in the previous section.

• If q(S)∩CCE 6= ∅, then a state x = {xi = [si,mi]}i∈N is stochastically stable if and only if

(i) mi = C for all i ∈ N and (ii) the strategy profile s = (s1, . . . , sn) constitutes an efficient

coarse correlated equilibrium, i.e.,

q(s) ∈ arg max
q∈q(S)∩CCE

∑
i∈N

∑
a∈A

Ui(a)qa. (B.34)

• If q(S)∩CCE = ∅, then a state x = {xi = [si,mi]}i∈N is stochastically stable if and only if

(i) mi = C for all i ∈ N and (ii) the strategy profile s = (s1, . . . , sn) constitutes an efficient

action profile, i.e.,

q(s) ∈ arg max
q∈q(S)

∑
i∈N

∑
a∈A

Ui(a)qa. (B.35)

For convenience, and with an abuse of notation, define

Ui(s) :=
∑
a∈A

Ui(a)qa(s) (B.36)

to be agent i’s expected utility with respect to distribution q(s), where s ∈ S.

The proof of Theorem 2 will consist of the following steps:
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(i) Define the unperturbed process, P 0.

(ii) Determine the recurrent classes of process P 0.

(iii) Establish transition probabilities of process P ε.

(iv) Determine the stochastically stable states of P ε using Theorem 11.

Part 1: Defining the unperturbed process

The unperturbed process P 0 is effectively the process identified in Section 3.2 where ε = 0.

Rather than dictate the entire process as done previously, here we highlight the main attributes of

the unperturbed process that may not be obvious upon initial inspection.

• If agent i is content, i.e., xi = [sbi , C], the trial action is sti = sbi with probability 1.

Otherwise, if agent i is discontent, the trial action is selected according to (3.10).

• The baseline utility ubi in (3.8) associated with joint baseline strategy sb is now of the form

ubi = Ui(s
b). (B.37)

This results from invoking the law of large numbers since p̄ = d1/εnc+1e. The trial utility

uti and acceptance utility uai are also of the same form.

• A content player will only become discontent if uai < ubi where associated payoffs are

computed according to (B.37).

Part 2: Recurrent classes of the unperturbed process

The second part of the proof analyzes the recurrent classes of the unperturbed process P 0

defined above. The following lemma identifies the recurrent classes of P 0.

Lemma 4. A state x = (x1, x2, . . . , xn) ∈ X belongs to a recurrent class of the unperturbed process

P 0 if and only if the state x fits into one of following two forms:
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• Form #1: The state for each agent i ∈ N is of the form xi =
[
sbi , C

]
where sbi ∈ Si. Each

state of this form comprises a distinct recurrent classes. We represent the set of states of

this form by C0.

• Form #2: The state for each agent i ∈ N is of the form xi =
[
sbi , D

]
where sbi ∈ Si. All

states of this form comprise a single recurrent class, represented by D0.

Proof. We begin by showing that any state x ∈ C0 is a recurrent class of the unperturbed process.

According to P 0, if the system reaches state x, then it remains at x with certainty for all future

time. Hence, each x ∈ C0 is a recurrent class of P 0. Next, we show that D0 constitutes a single

recurrent class. Consider any two states x, y ∈ D0. According to the unperturbed process, P 0, the

probability of transitioning from x to y is strictly positive
(
≥∏i∈N 1/|Si|

)
; hence, the resistance

of the transition x→ y is 0. Further note that the probability of transitioning to any state not in

D0 is zero. Hence, D0 forms a single recurrent class of P 0.

The last part of the proof involves proving that any state x = {[sbi ,mi]}i∈N /∈ C0 ∪D0 is not

recurrent in P 0. Since x /∈ C0 ∪D0, it consists of both content and discontent players. Denote the

set of discontent players by J = {i ∈ N : mi = D} 6= ∅. We will show that the discontent players J

will play a sequence of strategies with positive probability that drives at least one content player to

become discontent. Repeating this argument at most n times shows that any state x of the above

form will eventually transition to the all discontent state, proving that x is not recurrent.

To that end, let x(1) = x be the state at the beginning of the 1-st period. According to the

unperturbed process P 0, each discontent player randomly selects a strategy si ∈ Si which becomes

part of the player’s state at the ensuing stage. Suppose each discontent agent selects a trial strategy

si = (a1
i , . . . , a

w
i ) ∈ Awi ⊂ Si during the 1-st period, i.e., the discontent players select strategies of

the finest granularization. Note that each agent selects a strategy with probability ≥ 1 / |Si|. Here,
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the trial payoff for each player i ∈ N associated with the joint strategies s = ({sbi}i/∈J , {si}i∈J) is

uti(s) =

∫ 1

0
Ui(s(z))dz (B.38)

=
1

w
Ui(a) +

∫ 1

w
Ui(s

′(z))dz, (B.39)

for some a ∈ A as si(z) = si(z
′) for any z, z′ ∈ [0, 1/w] for any agent i ∈ N . If uti < ubi for any any

agent i /∈ J , agent i becomes discontent in the next stage and we are done.

For the remainder of the proof suppose uti(s) ≥ ubi(s
b) for all agents i /∈ J . This implies all

agents N \J will be content at the beginning of the second stage. By interdependence, there exists

a collective action ãJ ∈
∏
j∈J Aj and an agent i /∈ J such that Ui(a) 6= Ui(ãJ , aN\J). Suppose

each discontent agent selects a trial strategy s′i = (ã1
i , a

2
i , . . . , a

w
i ) ∈ Awi ⊂ Si during the second

period, i.e., only the first component of the strategy changed. The trial payoff for each player i ∈ N

associated with the joint strategies s′ = ({sbi}i/∈J , {s′i}i∈J) is

uti(s
′) =

∫ 1

0
Ui(s

′(z))dz

=
1

w
Ui(ãJ , aN\J) +

∫ 1

w
Ui(s

′(z))dz

6= uti(s)

If uti(s
′) < uti(s), agent i will become discontent at the ensuing stage and we are done. Otherwise,

agent i will stay content at the ensuing stage. However, if each discontent agent selects a trial

strategy s′′i = (a1
i , a

2
i , . . . , a

w
i ) ∈ Awi ⊂ Si during the third period, we know uti(s

′′) < uti(s
′), where

s′′ = ({sbi}i/∈J , {s′′i }i∈J). Hence, agent i will become discontent at the beginning of period 4. This

argument can be repeated at most n times, completing the proof.

Part 3: Transition probabilities of process P ε

Here, we establish the transition probability P εx→x+ for a pair of arbitrary states, x, x+ ∈ X.
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Let xi = [si,mi], x
+
i = [s+

i ,m
+
i ] for i ∈ N, s = (s1, s2, . . . , sn), and s+ = (s+

1 , s
+
2 , . . . , s

+
n ). Then,

P εx→x+ =
∑
s̃st∈S

∑
s̃a∈S

(
Pr[x+

∣∣ st = s̃t, sa = s̃a]

× Pr[sa = s̃a
∣∣ st = s̃t] Pr[st = s̃t]

)
. (B.40)

Note that the strategy selections and state transitions are conditioned on state x; for notational

brevity we do not explicitly write this dependence. Here, st and sa represent the joint trial and

acceptance strategies during the period before the transition to x+.. The double summation in

(B.40) is over all possible trial actions, s̃t ∈ S, and acceptance strategies, s̃a ∈ S. However,

recall from (3.14) - (3.17) that, when transitioning from x to x+, not all strategies can serve as

intermediate trial and acceptance strategies. In particular, transitioning to state x+ requires that

sa = s+; hence if s̃a 6= s+, then Pr[x+
∣∣ st = s̃t, sa = s̃a] = 0, so we can rewrite (B.40) as:

P εx→x+ =
∑
s̃t∈S

(
Pr[x+

∣∣ st = s̃t, sa = s+]

× Pr[sa = s+
∣∣ st = s̃t] Pr[st = s̃t]

)
(B.41)

There are three cases for the transition probabilities in (B.41). Before proceeding, we make the

following observations. The last term in (B.41), Pr[st = s̃t], is defined in Section 3.2; we will

not repeat the definition here. For the first two terms, agents’ state transition and strategy selec-

tion probabilities are independent when conditioned state x and on the joint trial and acceptance

strategy selections. Hence, we can write the first term as:

Pr[x+
∣∣ st = s̃t, sa = s+] =

∏
i∈N

Pr[x+
i

∣∣ st = s̃t, sa = s+] (B.42)

and the second term as:

Pr[sa = s+
∣∣ st = s̃t] =

∏
i∈N

Pr[sai = s+
i

∣∣ st = s̃t]. (B.43)

The following three cases specify individual agents’ probability of choosing the acceptance strategy

sai in (B.43) and transitioning to state x+
i in (B.42).
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Case (i) agent i is content in state x, i.e., mi = C, and did not experiment, sti = si:

For (B.43), since sai ∈ {sti, si} we know that

Pr[sai = s+
i

∣∣ st = s̃t] =

 1 if s+
i = si

0 otherwise

.

In (B.42), for any trial strategy st = s̃t, the probability of transitioning to a state x+
i depends

on realized average payoffs ubi and uai . In particular, if x+
i = [s+

i , C], then we must have that

uai ≥ ubi − ε, so

Pr

[
x+
i = [s+

i , C]
∣∣ sa = s+, st = s̃t

]
=

∫ 1

0
Pr[ubi = η]

∫ 1

η−ε
Pr[uai = ν

∣∣ st = s̃t, sa = s+]dνdη.

Then, the probability that x+
i = [s+

i , D] is

1− Pr

[
x+
i = [s+

i , C]
∣∣ sa = s+, st = s̃t

]
.

Case (ii) agent i is content and experimented, sti 6= si :

For (B.43), agent i’s acceptance strategy depends on its average baseline and trial payoffs, ubi and

uti. Recall, if uti ≥ ubi + ε, then sai = si, i.e., agent i’s acceptance strategy is simply its baseline

strategy from state x. Otherwise sai = sti. Utilities ubi and uti depend on joint strategies s and st

and on the common random signals sent during the corresponding phases. Therefore,

Pr[sai = s+
i

∣∣ st = s̃t 6= s]

=

∫ 1

0

∫ 1

0
Pr[sai = s+

i

∣∣ ubi = η, uti = ν, sti = si]

× Pr[ubi = η] Pr[uti = ν
∣∣ st = s̃t]dηdν

In (B.42), since agent i remains content and sticks with its acceptance strategy from the previous

period,

Pr[x+
i

∣∣ sa = s+, st = s̃t] =

 1 if s+
i = sai

0 otherwise

.
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Case (iii) agent i is discontent:

For (B.43),

Pr[sai = s+
i

∣∣ st = s̃t] =

 1 if s+
i = sti

0 otherwise

.

In (B.42), agent i’s probability of becoming content depends only on its received payoff during

the acceptance phase; it becomes content with probability ε1−uai and remains discontent with

probability 1− ε1−uai . Hence, if x+
i = [s+

i , C],

Pr

[
x+
i = [s+

i , C]
∣∣ sa = s+, st = s̃t

]
=

∫ 1

0
ε1−η Pr[uai = η

∣∣ sa = s+, st = s̃t]dη.

Then,

Pr

[
x+
i = [s+

i , D]
∣∣ sa = s+, st = s̃t

]
= 1− Pr

[
x+
i = [s+

i , C]
∣∣ sa = s+, st = s̃t

]
Now that we have established transition probabilities for process P ε, we may state the fol-

lowing lemma.

Lemma 5. The process P ε is a regular perturbation of P 0.

It is straightforward to see that P ε satisfies the first two conditions of Definition 11 with

respect to P 0. The fact that transition probabilities satisfy the third condition, Equation (A.12),

follows from the fact that the dominant terms in P εx→y are polynomial in ε. This is immediately

clear in all but the incorporation of realized utilities into the transition probabilities, as in (B.41).

However, for any joint strategy, s, and associated average payoff ui, since

E[ui] = E

[
1

p̄

`+p̄−1∑
τ=`

Ui(s(z(τ)))

]
= Ui(s).
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for any time period of length p̄ in which joint strategy s is played throughout the entire period.

Moreover, Var
[
Ui(s(z(τ)))

]
≤ 1. Therefore, we may use Chebyschev’s inequality and the fact that

p̄ = d1 / εnc+2e to see that

Pr
[∣∣ui − Ui(s)∣∣ ≥ ε] ≤ Var

[
Ui(s(z(τ)))

]
p̄ε2

≤ εnc. (B.44)

Note that this applies for all average utilities, ubi , u
t
i, and uai in the aforementioned state transition

probabilities.

Part 3: Determining the stochastically stable states

We begin by defining

C? := {x = {[si,mi]}i∈N

: q(s) ∈ CCE and mi = C, ∀i ∈ N} ⊆ C0

Here, we show that, if C? is nonempty, then a state x is stochastically stable if and only if q(s)

satisfies (B.34). The fact that q(s) must satisfy (B.35) when C? = ∅ follows in a similar manner.

To accomplish this task, we (1) establish resistances between recurrent classes, and (2) compute

stochastic potentials of each recurrent class.

B.2.1 Resistances between recurrent classes

We summarize resistances between recurrent classes in the following claim.

Claim 1. Resistances between recurrent classes satisfy:

For x ∈ C0 with corresponding joint strategy s,

r(D0 → x) =
∑
i∈N

(1− Ui(s)). (B.45)

For a transition of the form x→ y, where x ∈ C? and y ∈ (C0 ∪D0) \ {x},

r(x→ y) ≥ 2c. (B.46)
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For a transition of the form x→ y where x ∈ C0 \ C? and y ∈ (C0 ∪D0) \ {x},

r(x→ y) ≥ c. (B.47)

For every x ∈ C0 \ C?, there exists a path x = x0 → x1 → · · · → xm ∈ C? ∪D0 with resistance

r(xj → xj+1) = c, ∀j ∈ {0, 1, . . . ,m− 1}. (B.48)

These resistances are computed in a similar manner to the proof establishing resistances

in [38]; however, care must be taken due to the fact that there is a small probability that average

received utilities fall outside of the window Ui(s) ± ε during a phase in which joint strategy s is

played. We illustrate this by proving (B.45) in detail; the proofs are omitted for other types of

transitions for brevity.

Proof. Let x ∈ D0, x+ ∈ C0 with xi = [si, D] and x+
i = [s+

i , C] for each i ∈ N. Again, for notational

brevity, we drop the dependence on state x in the following probabilities. Note that all agents must

select st = s+
i in order to transition to state xi = [s+

i , C]; otherwise the transition probability is 0.

we have

P εx→x+
(a)
= Pr[x+

∣∣ sa = s+, st = s+] · Pr[sa = s+
∣∣ st = s+] · Pr[st = s+]

(b)
= Pr[x+

∣∣ sa = s+, st = s+] · Pr[st = s+]

(c)
= Pr[x+

∣∣ sa = s+, st = s+] ·
∏
i∈N

1 / |Si|

=
∏
i∈N

1

|Si|
· Pr[x+

i

∣∣ sa = s+, st = s+]

where: (a) follows from the fact that sai = sti since mi = D in state x for all i ∈ N , (b) Pr[sa =

s+
∣∣ st = s+] = 1 since all agents are discontent and hence commit to their trial strategies during

the acceptance period, and (c) Pr[st = s+] =
∏
i∈N 1 / |Si| since each discontent agent selects its

trial strategy uniformly at random from Si.

We now show that

0 < lim
ε→0+

P εx→x+

ε
∑
i∈N 1−Ui(s+)

<∞ (B.49)
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satisfying (A.12). For notational simplicity, we define

U+
i := Ui(s

+) + ε, U−i := Ui(s
+)− ε. (B.50)

We first lower bound P εx→x+ :

P εx→x+ =
∏
i∈N

1

|Si|
Pr[x+i

∣∣ sa = s+, st = s+]

=
∏
i∈N

1

|Si|

∫ 1

0

Pr[uai = η
∣∣ sa = s+, st = s+]ε1−ηdη

≥
∏
i∈N

1

|Si|

∫ U+
i

U−i

Pr[uai = η
∣∣ sa = s+, st = s+]ε1−ηdη

(a)

≥
∏
i∈N

ε1−U
−
i

|Si|

∫ U+
i

U−i

Pr[uai = η
∣∣ sa = s+, st = s+]dη

(b)

≥
∏
i∈N

ε1−U
−
i

|Si|
(1− εnc)

=
ε
∑

i∈N 1−U−i +O(εnc)∏
i∈N |Si|

(B.51)

where (a) is from the fact that ε1−η is continuous and increasing in η for ε ∈ (0, 1), and (b) follows

from (B.44). Continuing in a similar fashion, it is straightforward to show

P εx→x+ ≤ ε
∑
i∈N (1−U+

i ) +O(εnc). (B.52)

Given (B.51) and (B.52), and the fact that U+
i and U−i satisfy (B.50), we have that P εx→x+

satisfies (A.12) with resistance
∑

i∈N (1− Ui(s+)) as desired.

B.2.2 Stochastic potentials

The following lemma specifies stochastic potentials of each recurrent class. Using resistances

from Claim 1, the stochastic potentials follow from the same arguments as in [38]. The proof is

repeated below for completeness.

Lemma 6. Let x ∈ C0 \C? with corresponding joint strategy s, and let x? ∈ C? with corresponding
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joint strategy s?. The stochastic potentials of each recurrent class are:

γ(D0) = c|C0 \ C?|+ 2c|C?|,

γ(x) =
(
|C0 \ C?| − 1

)
c+ 2c|C?|+

∑
i∈N

(1− Ui(s)),

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?)),

Proof: In order to establish the stochastic potentials for each recurrent class, we will lower

and upper bound them.

Lower bounding the stochastic potentials: To lower bound the stochastic potentials of each

recurrent class, we determine the lowest possible resistance that a tree rooted at each of these

classes may have.

1) Lower bounding γ(D0):

γ(D0) ≥ c|C0 \ C?|+ 2c|C?|

In a tree rooted at D0, each state in C0 must have an exiting edge. In order to exit a state in

C0 \ C?, only a single agent must experiment, contributing resistance c. To exit a state in C?, at

least two agents must experiment, contributing resistance 2c.

2) Lower bounding γ(x), x ∈ C0 \ C?:

γ(x) ≥
(
|C0 \ C?| − 1

)
c+ 2c|C?|+

∑
i∈N

(1− Ui(s))

Here, each state in C0\{x}must have an exiting edge, which contributes resistance
(
|C0 \ C?| − 1

)
c+

2c|C?|. The recurrent class D0 must also have an exiting edge, contributing at least resistance∑
i∈N (1− Ui(s)).

3) Lower bounding γ(x?), x? ∈ C?:

γ(x?) ≥ |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?))

Again, each state in C0\{x?}must have an exiting edge, which contributes resistance
(
|C0 \ C?| − 1

)
c+

2c|C?|. The recurrent class D0 must also have an exiting edge, contributing resistance at least∑
i∈N (1− Ui(s?)).
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Upper bounding the stochastic potentials: In order to upper bound the stochastic potentials,

we construct trees rooted at each recurrent class which have precisely the resistances established

above.

1) Upper bounding γ(D0):

γ(D0) ≤ c|C0 \ C?|+ 2c|C?|

Begin with an empty graph with vertices X. For each state x ∈ C0 \ C?, add a path ending in

C?∪D0 so that each edge has resistance c. This is possible due to Claim 1. Now eliminate redundant

edges; this contributes resistance at most c|C0 \ C?| since each state in C0 \ C? has exactly one

outgoing edge. Finally, add an edge x? → D0 for each x? ∈ C0; this contributes resistance 2c|C?|.

2) Upper bounding γ(x), x ∈ C0 \ C?:

γ(x) ≤
(
|C0 \ C?| − 1

)
c+ 2c|C?|+

∑
i∈N

(1− Ui(s)),

This follows by a similar argument to the previous upper bound, except here we add an edge

D0 → x which contributes resistance
∑

i∈N (1− Ui(s)).

3) Upper bounding γ(x?), x? ∈ C? :

γ(x?) ≤ |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?)),

This follows from an identical argument to the previous bound.

We now use Lemma 6 to complete the proof of Theorem 2. For the first part, suppose C? is

nonempty, and let

x? ∈ arg max
x∈C?

∑
Ui(s),

where joint strategy s corresponds to state x. Then,

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s∗))

< |C0 \ C?|c+ 2c|C?| (since c ≥ n)

= γ(D).
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For x ∈ C0,

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?))

< |C0 \ C? − 1|c+ 2c (|C?|) +
∑
i∈N

(1− Ui(s))

= γ(x).

For x ∈ C? with

x /∈ arg max
x∈C?

∑
Ui(s),

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?))

< |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s)

= γ(x).

Applying Theorem 11, x? is stochastically stable. Since all other states have strictly larger stochastic

potential, only states x? ∈ C? with x? ∈ arg maxx∈C?
∑
Ui(s) are stochastically stable. From state

x?, if each agent plays according to its baseline strategy, then the probability that joint action a ∈ A

is played at any given time is Pr(a = a′) = qa
′(s?). This implies that a CCE which maximizes the

sum of agents’ payoffs is played with high probability as ε→ 0, after sufficient time has passed.

The second part of the theorem follows similarly by considering the case when C? = ∅.

B.3 Understanding Adversarial Influence in Distributed Systems: Back-

ground and Proofs

We begin by reviewing the underlying Markov process for log-linear learning in the adversarial

models, and then we provide the proofs corresponding to the theorems in Chapter 4.

B.3.1 Log-linear learning in the adversarial influence models

Log-linear learning dynamics define a family of aperiodic, irreducible Markov processes,

{P̃β}β>0, over state space A × Sk with transition probabilities parameterized by β [9]. Under
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our adversarial model, transition probabilities are

Pβ(((ai, a−i), S)→ (a′i, a−i), S
′) =

1

n
Pr[ai(t+ 1) = a′i | a−i(t) = a−i, S(t) = S] (B.53)

for any i ∈ N, ai ∈ {~x, ~y}, (ai, a−i) ∈ A and S, S′ ∈ Sk. Here S transitions to S′ according to

the specified adversarial model. If a and a′ ∈ A differ by more than one agent’s action, then

Pβ(a→ a′) = 0.

For each model of adversarial behavior, it is straightforward to reduce P̃β to a Markov chain,

Pβ over state space A. Since Pβ is aperiodic and irreducible for any β > 0, it has a unique stationary

distribution, πβ, with πβPβ = πβ.

As β → ∞, the stationary distribution, πβ, associated with log-linear learning converges to

a unique distribution, π := limβ→∞ πβ. If π(a) = 1, then joint action a is strictly stochastically

stable [17].2

As β →∞, transition probabilities Pβ(a→ a′) of log-linear learning converge to the transition

probabilities, P (a → a′), of a best response process. Distribution π is one of possibly multiple

stationary distributions of a best response process over game G.

B.3.2 Stability in the presence of a fixed, intelligent adversary

When a fixed, intelligent adversary influences set S, the corresponding influenced graphical

coordination game is a potential game [48] with potential function

ΦS(ai, a−i) =
1

2

∑
i∈N

(Ui(ai, a−i) + 2 · 1i∈S,ai=y) . (B.54)

This implies that the stationary distribution associated with log-linear learning influenced by

a fixed adversary is

π(a) =
exp(β · ΦS(a))∑

a′∈A exp(β · ΦS(a′))
, (B.55)

for a ∈ A [9]. Hence, a ∈ A is strictly stochastically stable if and only if ΦS(a) > ΦS(a′) for all

a′ ∈ A, a′ 6= a.

2 Note that this definition of strict stochastic stability is equivalent to the definition in the introduction.
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Proof of Theorem 5: This proof adapts Proposition 2 in [66] to our adversarial model. Let

G = (N,E) and suppose S(t) = N for all t ∈ N. Define (~yT , ~xN\T ) to be the joint action (a1, . . . , an)

with T = {i : ai = y}. It is straightforward to show that

α >
|T | − d(T,N \ T )

d(T,N)
, ∀T ⊆ N

if and only if

ΦN (~x) = (1 + α)d(N,N)

> (1 + α)d(N \ T,N \ T ) + d(T, T ) + |T |

= ΦN (~yT , ~xN\T ) (B.56)

for all T ⊆ N , R 6= ∅, implying the desired result.

Proof of Theorem 8 part (a): Let G = (N,E) be a line influenced by an adversary with

capability k. Joint action ~x is strictly stochastically stable for all S ⊆ N with |S| = k if and only if

ΦS(~x) > ΦS(~yT , ~xN\T ) ⇐⇒ (1 + α)d(N,N) > (1 + α)d(N \ T,N\ T ) + d(T, T ) + |S ∩ T |.

(B.57)

for all S ⊆ N with |S| = k and all T ⊆ N , T 6= ∅.

Define t := |T |, let p denote the number of components in the graph G restricted to T , and

let ` denote the number of components in the graph restricted to N \ T . Since T 6= ∅, we have

p ≥ 1 and ` ∈ {p− 1, p, p+ 1}.

The case where T = N implies

ΦS(~x) = (1 + α)(n− 1) > n− 1 + k = ΦS(~y),

which holds if and only if α > k /(n− 1).

If T ⊂ N , the graph restricted to N \ T has at least one component, i.e., ` ≥ 1. Then,

ΦS(~yT , ~xN\T ) = (1 + α)(n− t− `) + t− p+ |S ∩ T |

≤ (1 + α)(n− t− 1) + t− 1 + min{k, t}
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where the inequality is an equality when T = [t] and S = [k]. Then,

ΦS(~yT , ~xN\T ) ≤ (1 + α)(n− t− 1) + t− 1 + min{k, t}

< (1 + α)(n− 1)

= ΦS(~x)

for all T ⊂ N if and only if α > (k − 1) / k, as desired.

Proof of Theorem 8 part (b): Suppose α < k /(n− 1). Then

ΦS(~y) = n− 1 + k > (1 + α)(n− 1) = ΦS(~x)

for any S ⊆ N with |S| = k. Then, to show that ~y is stochastically stable for influenced set S

satisfying

|S ∩ [i, i+ t]| ≤
⌈
kt

n

⌉
,

it remains to show that ΦS(~y) > ΦS(~yT , ~xN\T ) for any T ⊂ N with T 6= ∅ and T 6= N. Suppose the

graph restricted to set T has p components, where p ≥ 1. Label these components as T1, T2, . . . , Tp

and define t := |T | and ti := |Ti| Let ` represent the number of components in the graph restricted

to N \ T. Since G is the line graph, we have ` ∈ {p− 1, p, p+ 1}, and since T 6= N , ` ≥ 1.

For any T ⊂ N with T 6= N,T 6= ∅, and 0 < t < n,

ΦS(~yT , ~xN\T )

= (1 + α)(n− t− `) +

p∑
j=1

(tj − 1 + |S ∩ Tj |)

< n− 1 + k (B.58)

= ΦS(~y)

where (B.58) is straightforward to verify.

The proofs of parts (c) and (d) follow in a similar manner to parts (a) and (b), by using the

potential function ΦS for stochastic stability analysis.
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B.3.3 Stability in the presence of a mobile, random adversary

The following lemma applies to any graphical coordination game in the presence of a mobile,

random adversary with capability k ≤ n − 1. It states that a mobile random adversary decreases

the resistance of transitions when an agent in N changes its action from x to y, but does not change

the resistance of transitions in the opposite direction.

Lemma 7. Suppose agents in N update their actions according to log-linear learning in the presence

of a mobile, random adversary with capability k, where 1 ≤ k ≤ n − 1. Then the resistance of a

transition where agent i ∈ N changes its action from x to y is:

r((x, a−i)→ (y, a−i)) = max {Ui(x, a−i)− Ui(y, a−i)− 1, 0} (B.59)

and the resistance of a transition where agent i ∈ N changes its action from y to x is:

r((y, a−i)→ (x, a−i)) = max {Ui(y, a−i)− Ui(x, a−i), 0} . (B.60)

Here Ui : A → R, defined in (4.1), is the utility function for agent i in the uninfluenced game, G.

Proof: In the presence of a mobile, random agent,

Pβ ((x, a−i)→ (y, a−i)) =
1

n

(
k

n
· exp(β(Ui(y, a−i) + 1))

exp(β(Ui(y, a−i) + 1)) + exp(βUi(x, a−i))

+
n− k
n
· exp(βUi(y, a−i))

exp(βUi(y, a−i)) + exp(βUi(x, a−i))

)
Define Pε ((x, a−i)→ (y, a−i)) by substituting ε = e−β into the above equation. It is straightforward

to see that

0 < lim
ε→0+

Pε ((x, a−i)→ (y, a−i))

εUi(x,a−i)−Ui(y,a−i)−1
<∞,

implying

r((x, a−i)→ (y, a−i)) = max {Ui(x, a−i)− Ui(y, a−i)− 1, 0} .

Equation (B.60) may be similarly verified.

Proof of Theorem 9: First we show that, for any α > 0, ~x and ~y are the only two recurrent

classes of the unperturbed process, P , for the line. Then we show that, for the perturbed process,
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R(~x, ~y) < R(~y, ~x) ⇐⇒ α > 1 and R(~y, ~x) < R(~x, ~y) ⇐⇒ α < 1. That is, when α > 1 and

β is large, the lowest resistance path from ~x to ~y occurs with higher probability than the lowest

resistance path from ~y to ~x in Pβ, and vice versa when α < 1. Combining this with Theorem ??

proves Theorem 9.

Recurrent classes of P for the line: Note that, P (~x, a) = 0 for all a ∈ A, a 6= ~x, and P (~y, a) = 0

for all a ∈ A, a 6= ~y, implying ~x and ~y are recurrent. To show that no other state is recurrent, we

will show that, for any a ∈ A \ {~x, ~y}, there is a sequence of positive probability transitions in P

leading from a to ~x.

Let a ∈ A with a 6= ~x, ~y. Without loss of generality, choose i, i + 1 such that ai = y and

ai+1 = x. Denote (ai, a−i) = a, and note that:

P ((y, a−i)→ (x, a−i)) =
1

n
· n− k

n
> 0 (B.61)

for any k ≤ n − 1 and α > 0. Since (B.61) holds for any a 6= ~x, ~y, we can construct a sequence

of at most n − 1 positive probability transitions leading to joint action ~x. Therefore a cannot be

recurrent in P.

Resistance between recurrent classes ~x and ~y: We will show that for all 1 ≤ k ≤ n− 1,

R(~y, ~x) = 1, ∀α > 0, (B.62)

R(~x, ~y) ≥ α, ∀α > 0, (B.63)

and R(~x, ~y) = α, ∀α ≤ 1. (B.64)

For (B.62), we have r(~y, (x, y, . . . , y)) = 1, and r(~y, a) ≥ 1 for any a 6= ~y, implying that R(~y, ~x) ≥ 1.

Then, since

r
(
(~x[t], ~y[t+1,n]), (~x[t+1], ~y[t+2,n])

)
= 0,

for any 1 ≤ t ≤ n− 1, and

r
(
(~x[n−1], ~y[n,n]), ~x

)
= 0,

the path ~y → (x, y, . . . , y)→ (x, x, y, . . . , y)→ · · · → ~y has resistance 1. Since we know R(~y, ~x) ≥ 1,

this implies that R(~y, ~x) = 1.
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Now, for (B.63), since r(~x, a) ≥ α for any a 6= ~x, this implies R(~x, ~y) ≥ α. In particular

r(~x→ (y, x, . . . , x)) = α. When α < 1,

r
(
(~y[t], ~x[t+1,n]), (~y[t+1], ~x[t+2,n])

)
= 0

for any 1 ≤ t ≤ n− 1, and

r
(
(~y[n−1], ~x[n,n]), ~y

)
= 0,

implying that the path ~x → (y, x, . . . , x) → (y, y, . . . , x) → · · · → ~y has resistance α when α ≤ 1.

Hence R(~x, ~y) = α.

Combining (B.62) - (B.64) with Theorem ?? establishes Theorem 9.

B.3.4 Stability in the presence of an intelligent, mobile agent

Define Pµβ to be the Markov process associated with log-linear learning in the presence of a

mobile, intelligent adversary using policy µ.

Proof of Theorem 10 part (a): Let G = (N,E) be the line, influenced by a mobile, intelligent

adversary with capability k = 1. For any policy µ : A → S = N , if α 6= 1, only ~x and ~y are

recurrent in the unperturbed process, Pµ. This can be shown via an argument similar to the one

used in the proof of Theorem 9.

Define µ? as in (4.11). We will show that, (1) in Pµ
?

β , ~x is stochastically stable if and only

if α > 1, and ~y is stochastically stable if and only if α < 1, and (2) µ? is optimal, i.e., if α = 1,

~x is stochastically stable for any µ ∈ M1, and if α > 1, ~x is strictly stochastically stable for any

µ ∈M1.

For policy µ ∈ M1, let rµ(a, a′) denote the single transition resistance from a to a′ ∈ A in

Pµβ , and let Rµ(a, a′), denote the resistance of the lowest resistance path from a to a′ ∈ A.

For any µ ∈ M1, we have rµ(~x, a) ≥ α, ∀a ∈ A, a 6= ~x, and rµ(~y, a) ≥ 1, ∀a ∈ A, a 6= ~y.

Therefore

Rµ(~x→ ~y) ≥ α, and Rµ(~y, ~x) ≥ 1. (B.65)



www.manaraa.com

112

If α < 1, the path ~x → (y, x, . . . , x) → (y, y, x, . . . , x) → · · · → ~y in Pµ
?

β has total resistance

α. Equation (B.65) implies that Rµ
?
(~x, ~y) = α < 1 ≤ Rµ

?
(~y, ~x), so by Theorem ??, ~y is strictly

stochastically stable in Pµ
?
.

If α = 1, it is straightforward to show that both ~x and ~y are stochastically stable in Pµ
?

β .

Moreover, for any µ ∈M, either the resistance of path

~y → (x, y, . . . , y)→ (x, x, y, . . . y)→ · · · → ~x

or the resistance of path

~y → (y, . . . , y, x)→ (y . . . , y, x, x)→ · · · → ~x

is 1, and hence it is impossible to find a policy with Rµ(~x, ~y) < Rµ(~y, ~x).

If α > 1, similar arguments show that Rµ(~y, ~x) = 1 for any µ ∈ Mk. Combining this with

(B.65) implies that ~x is stochastically stable for any Pµβ , µ ∈M.

Proof of (b): Again let G = (N,E) be the line, and suppose the adversary has capability k with

2 ≤ k ≤ n− 1. We will show that, for a policy µ? which satisfies Conditions 1 - 3 of Theorem 10, ~x

is strictly stochastically stable in Pµ
?

if and only if α > n
n−1 , and ~y is strictly stochastically stable if

and only if α < n
n−1 . Since this is the same bound on α when we have an adversary with capability

n, from Theorem 8 part (a), this also proves that policy µ? is optimal, i.e., no other policy can

stabilize a state a ∈ A with ai = ~y for some i ∈ N when α > n
n−1 .

First note that only ~y is recurrent in Pµ
?

when α ≤ 1, and hence ~y is strictly stochastically

stable in Pµ
?

β .

Now assume α > 1. Again, it is straightforward to verify that only ~x and ~y are recurrent

in Pµ
?
. Note that r(~x → a) ≥ α,∀a 6= ~x, and r(~y → a) = 2,∀a 6= ~y. Moreover, the path

~x→ (y, x, . . . , x)→ (y, y, x, . . . , x)→ · · · → ~y has total resistance α+ (n− 2)(α− 1) in Pµ
?

β .

It is straightforward to verify that this is the least resistance path from ~x to ~y in Pµ
?

β , implying

R(~x, ~y) = α+ (n−2)(α−1). The path ~y → (x, y, . . . , y)→ (x, x, y, . . . , y)→ · · · → ~x has resistance

2; hence R(~y → ~x) = 2.
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